MT8801C Radio Communication Analyzer Options 01: Analog Measurement Options 07: Spectrum Analyzer Operation Manual

Fourth Edition

Read this manual before using the equipment. Keep this manual with the equipment.

ANRITSU CORPORATION

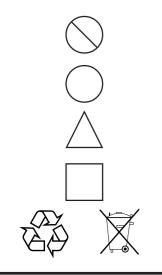
Document No.: M-W1671AE-4.0

Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following safety symbols to indicate safety-related information. Insure that you clearly understand the meanings of the symbols BEFORE using the equipment. Some or all of the following five symbols may not be used on all Anritsu equipment. In addition, there may be other labels attached to products which are not shown in the diagrams in this manual.

Symbols used in manual

This indicates a very dangerous procedure that could result in serious injury or death if not performed properly.


This indicates a hazardous procedure that could result in serious injury or death if not performed properly.

This indicates a hazardous procedure or danger that could result in light-to-severe injury, or loss related to equipment malfunction, if proper precautions are not taken.

Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Insure that you clearly understand the meanings of the symbols and take the necessary precautions BEFORE using the equipment.

This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.

This indicates an obligatory safety precaution. The obligatory operation is indicated symbolically in or near the circle.

This indicates warning or caution. The contents are indicated symbolically in or near the triangle.

This indicates a note. The contents are described in the box.

These indicate that the marked part should be recycled.

MT8801C Radio Communication Analyzer

Options 01: Analog Measurement Options 07: Spectrum Analyzer

Operation Manual

- 1 December 1999 (First Edition)
- 10 December 2003 (Fourth Edition)

Copyright $\ensuremath{\textcircled{}}$ 1999-2003, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.

The contents of this manual may be changed without prior notice. Printed in Japan

For Safety

WARNING 🖄

 ALWAYS refer to the operation manual when working near locations at which the alert mark shown on the left is attached. If the operation, etc., is performed without heeding the advice in the operation manual, there is a risk of personal injury. In addition, the equipment performance may be reduced.

Moreover, this alert mark is sometimes used with other marks and descriptions indicating other dangers.

2. Measurement Categories

This instrument is designed for Measurement category I (CAT I). Don't use this instrument at the locations of measurement categories from CAT II to CAT IV.

In order to secure the safety of the user making measurements, IEC 61010 clarifies the range of use of instruments by classifying the location of measurement into measurement categories from I to IV.

The category outline is as follows:

Measurement category I (CAT I):

Secondary circuits of a device connected to an outlet via a power transformer etc.

Measurement category II (CAT II):

Primary circuits of a device with a power cord (portable tools, home appliance etc.) connected to an outlet.

Measurement category III (CAT III):

Primary circuits of a device (fixed equipment) to which power is directly supplied from the power distribution panel, and circuits from the distribution panel to outlets.

Measurement category IV (CAT IV):

All building service-line entrance circuits through the integrating wattmeter and primary circuit breaker (power distribution panel).

3. When supplying power to this equipment, connect the accessory 3-pin power cord to a grounded outlet. If a grounded outlet is not available, before supplying power to the equipment, use a conversion adapter and ground the green wire, or connect the frame ground on the rear panel of the equipment to ground. If power is supplied without grounding the equipment, there is a risk of receiving a severe or fatal electric shock.

For Safety

WARNING 🖄

4. This equipment cannot be repaired by the user. DO NOT attempt to Repair open the cabinet or to disassemble internal parts. Only Anritsu-trained service personnel or staff from your sales representative with a knowl-WARNING A edge of electrical fire and shock hazards should service this equipment. There are high-voltage parts in this equipment presenting a risk of severe injury or fatal electric shock to untrained personnel. In addition, there is a risk of damage to precision parts. **Falling Over** 5. This equipment should be used in the correct position. If the cabinet is turned on its side, etc., it will be unstable and may be damaged if it falls over as a result of receiving a slight mechanical shock. And also DO NOT use this equipment in the position where the power switch operation is difficult. **Battery Fluid** 6. DO NOT short the battery terminals and never attempt to disassemble it or dispose of it in a fire. If the battery is damaged by any of these actions, the battery fluid may leak. This fluid is poisonous. DO NOT touch it, ingest it, or get in your eyes. If it is accidentally ingested, spit it out immediately, rinse your mouth with water and seek medical help. If it enters your eyes accidentally, do not rub your eyes, irrigate them with clean running water and seek medical help. If the liquid gets on your skin or clothes, wash it off carefully and thoroughly. LCD 7. This instrument uses a Liquid Crystal Display (LCD); DO NOT subject the instrument to excessive force or drop it. If the LCD is subjected to strong mechanical shock, it may break and liquid may leak. This liquid is very caustic and poisonous. DO NOT touch it, ingest it, or get in your eyes. If it is ingested accidentally, spit it out immediately, rinse your mouth with water and seek medical help. If it enters your eyes accidentally, do not rub your eyes, irrigate them with clean running water and seek medical help. If the liquid gets on your skin or clothes, wash it off carefully and thoroughly.

Replacing Fuse	 Before Replacing the fuses, ALWAYS remove the power cord from the poweroutlet and replace the blown fuses. ALWAYS use new fuses o the type and rating specified on the fuse marking on the rear panel o the cabinet. 		
	T6.3A indicates a time-lag fuse. T6.3A or F6.3A indicate a normal fusing type fuse.		
	There is risk of receiving a fatal electric shock if the fuses are replaced with the power cord connected.		
Cleaning	 2. Keep the power supply and cooling fan free of dust. Clean the power inlet regularly. If dust accumulates around the power pins, there is a risk of fire. Keep the cooling fan clean so that the ventilation holes are not ob structed. If the ventilation is obstructed, the cabinet may overhea and catch fire. 		
▲ CAUTION/注意 >18kg HEAVY WEIGHT/重量物	 Use two or more people to lift and move this equipment, or use a trolley There is a risk of back injury, if this equipment is lifted by one person. 		
Check Terminal	 Never input a signal of more than the specified voltage between the measured terminal and ground. Input of an excessive signal may dam age the equipment. 		
	 Do not take out the floppy disk if the lamp of the floppy disk drive is on If it is taken out, the contents of the storage medium will be damaged resulting in floppy disk drive failure. 		

For Safety —

_

Replacing Memory Back-up Battery	 The power for memory back-up of the MT8801C is supplied by a poly-carbomonofluoride lithium battery. this battery should only be replaced by a battery of the same type; since replacement can only be made by Anritsu, contact the nearest Anritsu representative when replacement is required. At the end of it's life, the battery should be recycled or disposed properly. Note: The Battery life is about 7 years. Early battery replacement is recommended.
External Storage Media	 The MT8801C stores data and programs using a floppy disk (FD), memory card (MC), and backed-up memories. Data and programs may be lost due to improper use or failure. Anritsu therefore recommends that you back up the memory. <u>ANRITSU CANNOT COMPENSATE FOR ANY MEMORY LOSS.</u> Please pay careful attention to the following points. Do not remove the floppy disk from the equipment being accessed. (FD) Do not touch the FD directly or by using any object. Do not place the equipment where dirty and dusty. Isolate the FD and memory card from static electricity. Avoid to placing the FD in direct sunlight or near heating sources. Store under temperature of 40° to 54°C, humidity of 8 to 90% (No condensation).
Disposing of Product	 (Memory card) Isolate the memory card from static electricity. (Backed-up memory) Isolate the memory from static electricity. The MT8801C uses chemical compound semiconductor including arsenic. At the end of its life, the MT8801C should be recycled or disposed properly according to the local disposal regulations.

Equipment Certificate

Anritsu Corporation certifies that this equipment was tested before shipment using calibrated measuring instruments with direct traceability to public testing organizations recognized by national research laboratories including the National Institute of Advanced Industrial Science and Technology, and the Communications Research Laboratory, and was found to meet the published specifications.

Anritsu Warranty

Anritsu Corporation will repair this equipment free-of-charge if a malfunction occurs within 1 year after shipment due to a manufacturing fault, provided that this warranty is rendered void under any or all of the following conditions.

- The fault is outside the scope of the warranty conditions described in the operation manual.
- The fault is due to mishandling, misuse, or unauthorized modification or repair of the equipment by the customer.
- The fault is due to severe usage clearly exceeding normal usage.
- The fault is due to improper or insufficient maintenance by the customer.
- The fault is due to natural disaster including fire, flooding, earthquake, etc.
- The fault is due to use of non-specified peripheral equipment, peripheral parts, consumables, etc.
- The fault is due to use of a non-specified power supply or in a non-specified installation location.

In addition, this warranty is valid only for the original equipment purchaser. It is not transferable if the equipment is resold.

Anritsu Corporation will not accept liability for equipment faults due to unforeseen and unusual circumstances, nor for faults due to mishandling by the customer.

Anritsu Corporation Contact

If this equipment develops a fault, contact Anritsu Service and Sales offices at the address at the end of paper-edition manual or the separate file of CD-edition manual.

Front Panel Power Switch

To prevent malfunction caused by accidental touching, the front power switch of this equipment turns on the power if it is pressed continuously for about one second in the standby state. If the switch is pressed continuously for one second in the power-on state, the equipment enters the standby state.

In the power-on state, if the power plug is removed from the outlet, then reinserted into it, the power will not be turned on. Also, if the lines is disconnected due to momentary power supply interruption or power failure, the power will not be turned on (enters the standby state) even if the line is recovered.

This is because this equipment enters the standby state and prevents incorrect data from being acquired when the line has to be disconnected and reconnected.

For example, if the data acquisition requires a long time at the BER measurement, momentary power supply interruption (power failure) might occur during measurement and the line could be recovered automatically to power-on. In such a case, the equipment may mistake incorrect data for correct data without recognizing the momentary power supply interruption.

If this equipment enters the standby state due to momentary power supply interruption or power failure, check the state of the measuring system and press the front power switch to restore power to this equipment.

Further, if this equipment is built into a system and the system power has to be disconnected then reconnected, the power for this equipment must also be restored by pressing the front power switch.

Consequently, if this equipment is built into remote monitoring systems that use MODEMs, the standby function of this equipment must be modified.

Notes On Export Management

This product and its manuals may require an Export License/Approval by the Government of the product's country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals are needed to be broken/shredded so as not to be unlawfully used for military purpose.

Trademark and Registered Trademark

MS-DOS is a registered trademark of Microsoft Corporation.

CE Conformity marking

Anritsu affixes the CE Conformity marking on the following product (s) in accordance with the Council Directive 93/68/EEC to indicate that they conform with the EMC and LVD directive of the European Union (EU).

CE Marking

CE

1. Product Model

Model:

MT8801C Radio Communication Analyzer

2. Applied Directive

- EMC: Council Directive 89/336/EEC
- LVD: Council Directive 73/23/EEC

3. Applied Standards

• EMC: Emission: EN61326: 1997 / A2: 2001 (Class A) Immunity: EN61326: 1997 / A2: 2001 (Annex A)

Performance Criteria*

IEC 61000-4-2 (ESD)	В
IEC 61000-4-3 (EMF)	А
IEC 61000-4-4 (Burst)	В
IEC 61000-4-5 (Surge)	В
IEC 61000-4-6 (CRF)	А
IEC 61000-4-8 (RPFMF)	А
IEC 61000-4-11 (V dip/short)	В

- *: Performance Criteria
 - A: During testing normal performance within the specification limits
 - B: During testing, temporary degradation, or loss of function or performance which is self-recovering

Harmonic current emissions:

EN61000-3-2: 2000 (Class A equipment)

• LVD: EN61010-1: 2001 (Pollution Degree 2)

C-tick Conformity marking

Anritsu affixes the C-tick marking on the following product (s) in accordance with the regulation to indicate that they conform with the EMC framework of Australia/New Zealand.

C-tick marking

1. Product Model

Model:

MT8801C Radio Communication Analyzer

2. Applied Standards

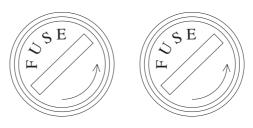
EMC: Emission: AS/NZS 2064.1 / 2 (ISM, Group 1, Class A equipment)

Power Line Fuse Protection

For safety, Anritsu products have either one or two fuses in the AC power lines as requested by the customer when ordering.

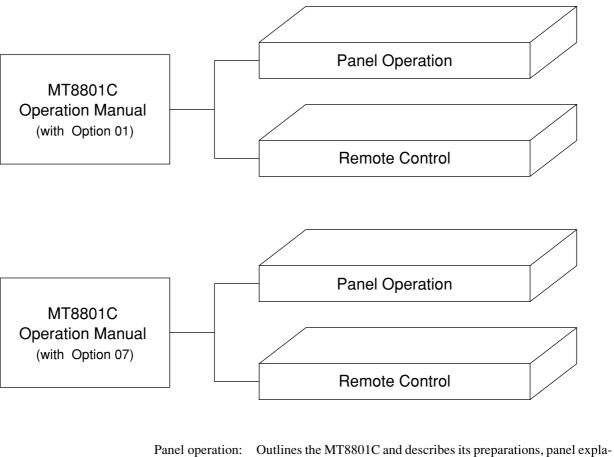
Single fuse: A fuse is inserted in one of the AC power lines.

Double fuse: A fuse is inserted in each of the AC power lines.


Example 1: An example of the single fuse is shown below:

Fuse Holder

Example 2: An example of the double fuse is shown below:


Fuse Holders

ABOUT THIS MANUAL

(1) MT8801C Operation Manual (with Option 01 and Option 07)

The MT8801C Radio Communication Analyzer (Option 01 and Option 07)operation manual consists of the following two manuals. Use the manuals matching the usage objective.

nations, operations, performance text, calibrations, storage and transportation.

Remote Control: Describes RS-232C/GPIB remote control and the sample programs etc.

MT8801C

Radio Communication Analyzer

Option 01: Analog Measurement Operation Manual (Panel Operation)

Table of Contents

For Safety		iii	
Aboı	ut This Manual	I	
Sect	ion 1 General	1-1	
1.1	General	1-2	
1.2	Manual Composition	1-3	
1.3	Equipment Configuration	1-4	
1.4 1.5	Optional Accessories and Peripherals Specifications	1-5 1-6	
Sect	ion 2 Preparations Before Use	2-1	
2.1	Installation Site and Environmental Conditions	2-2	
2.2	Safety Measures	2-3	
2.3	Preparations before Power-on	2-5	
2.4	Installation	2-9	
2.5	Precautions for Handling Storage Media	2-10	
Sect	ion 3 Panel Layout and Overview of		
	Operation	3-1	
3.1	Panel Layout	3-2	
3.2	Overview of Operation	3-6	
Sect	ion 4 Operation	4-1	
4.1	Turning on and off the Power	4-2	
4.2	Screen Descriptions	4-7	
4.3	Preparations	4-15	
4.4	Setting Common Measurement Parameter		
	— Setup Common Parameter(Analog) screen	4-32	
4.5	Transmitter (TX) Measurement — Setup TX Measure		
	Parameter(Analog) screen, TX Measure (Analog) screen,	4 05	
	TX Measure with SG (Analog) screen	4-35	

4.6	Receiver (RX) Measurement	
	-RX Measure (Analog) screen	4-52
4.7	AF Signal Measurement	
	—AF Measure (Analog) screen	4-57
4.8	Saving and recalling parameter data:	
	Save Parameter screen, Recall Parameter screen	4-61
4.9	Operating the file: File Operation screen	4-67
4.10	Screen hard copy Copy	4-70
4.11	Settings relating to remote control and panel key	
	control	4-71

Section 5 Peformance Tests 5-1

5.1	Requirements for Performance Tests	5-2
5.2	Instruments Required for Performance Test	5-3
5.3	Performance Tests	5-4
5.4	About Service	5-70

6.1	Calibration Requirements	6-2
6.2	Equipment Required for Calibration	6-2
6.3	Calibration	6-3

Section 7 Storage and Transportation 7-1

7.1	Cleaning the Cabinet	7-2
7.2	Storage Precautions	7-3

Appendixes..... App-1

Appendix A Screen/ Function Key Change Figure	A-1
Appendix B List of Initial Values	B-1
Appendix C Index	C-1

Section 1 General

1.1	General	1-2		
1.2	Manual Composition			
1.3	Equipment Configuration	1-4		
	1.3.1 Standard configuration	1-4		
	1.3.2 Options	1-4		
1.4	Optional Accessories and Peripherals	1-5		
1.5	Specifications	1-6		

1.1 General

The MT8801C Radio Communication Analyzer is a measuring-instrument platform that consists of the hardware components necessary for testing digital mobile telecommunication terminals. Using the MT8801C along with the optionally available measurement software allows you to evaluate the performance of mobile telecommunication equipment with efficiency.

By using the Option 01: Analog Measurement, you can use the MT8801C as an integrated measuring instrument (hereafter called this analyzer) that can evaluate the functions and performances of the mobile telecommunication equipment of the analog system.

Measurement functions offered by this Option 01 are as follows:

• RF counter: Measures the RF signal frequency up to 3 GHz. AF counter: Measures the AF signal frequency up to 20 kHz. • AF oscillator: Generates the AF signal up to 20 kHz. • Power meter: Measures the RF signal power up to 3 GHz. • FM measurement: Measures the frequency deviation of RF signal up to 20 kHz. • øM measurement: Measures the phase deviation of RF signal up to 10 rad. • AF level meter: Measures the level and distortion of the AF signal up to 20 kHz. • Noise generator: Generates the white noise of the audio band. Generates the FM-modulated RF signal. • Signal generator: • Demodulated output: Outputs the FM-detected demodulation signal.

This analyzer is equipped with a high-speed digital signal processing technology, allowing you to carry out transmission and reception measurements quickly and with high accuracy.

1.2 Manual Composition

This manual is made up of the following sections.

Section 1 General

Describes the introduction, composition, function specifications and performance of this instrument.

Section 2 Preparations before Use

Explains various work to be performed before using this instrument.

Section 3 Panel Layout and Overview of Operation

Explains the basic items for operating this equipment.

Section 4 Operation

Explains basic operation and how to operate for each measurement item.

Section 5 Performance Test Explains the performance test method for this instrument.

Section 6 Calibration Describes calibration items and methods for the periodical calibration of this equipment.

Section 7 Storage and Transportation Describes how to store and transport this equipment.

Appendix A Screens and Function Key Transition Diagrams

Appendix B Initial Values

Appendix C Index

1.3 Equipment Configuration

This paragraph describes the configuration of the MT8801C Radio Communication Analyzer (with option 01) with standard accessories.

1.3.1 Standard configuration

The table below shows the configuration of the Option 01 Analog measurement of the MT8801C with the standard accessories.

Item	Order No.	Name	Qty	Remarks
Main	MT8801C	Analog measurement	1	
instrument	Option 01			
Accessories	W1671AE	Operation manual	1	For option 01

1.3.2 Options

The table below shows the MT8801C options.

These are sold separately.

Table 1-2	Options
-----------	---------

Option No.	Name	Remarks
01	Analog measurement	
04	AF low impedance output	
07	Spectrum analyzer	
10, 11	GSM Audio Test	Option 01 is required.
12	CDMA measurement	Option 01 is required.

1.4 Optional Accessories and Peripherals

The following table shows the optional accessories and peripherals for the MT8801C which are all sold separately.

Model*/Order No.	Name*	Remarks
J0127C	Coaxial cord	BNC-P•RG-58A/U•BNC-P, 0.5 m
J0769	Coaxial adapter	BNC-J•TNC-P
J0040	Coaxial adapter	N-P•BNC-J
J0007	GPIB connection cable	408JE-101, 1 m
J0008	GPIB connection cable	408JE-102, 2 m
J0742A	RS-232C cable	1 m, D-sub 25 pins, for PC-9800 Series personal computer of NEC Corp.
J0743A	RS-232C cable	1 m, D-sub 9 pins, for IBM PC/AT personal computer
MN1607A	Coaxial switch	DC to 3 GHz, 50 Ω , externally controllable
MA1612A	4-Port junction pad	5 to 3000 MHz
J0395	Attenuator for high power	30 dB, 30 W, DC to 9 GHz
B0329D	Protective cover	
B0331D	Front handle kit	2 pcs/set
B0332	Coupling plate	4 pcs/set
B0333D	Rack mounting kit	
B0334D	Carrying case	With casters and protective cover

Table 1-3 Optional Accessories and Peripherals

* Please specify the model/order number, name, and quantity when ordering.

<Peripherals and applicable units>

<Optional accessories>

Model*/Order No.*	Name*	
MS8604A	Digital mobile radio transmitter tester	
MD1620B	Signaling tester (PDC)	
MD1620C	Signaling tester (PHS)	
MD6420A	Data transmission analyzer	
MS2602A	Spectrum analyzer	
MG3670B	Digital modulation signal generator	

* Please specify the model/order number, name, and quantity when ordering.

1.5 Specifications

The MT8801C specifications are listed in Tables 1-4 to 1-5 below.

Table 1-4 MT8801C Specifications

	Frequency range		300 kHz to 3 GHz
			+40 dBm (10 W) (MAIN connector)
	Maximum input level		+20 dBm (100 mW) (auxiliary input connector)
			N-type connector
	Input/output	MAIN I/O connector	Impedance 50 Ω , VSWR \leq 1.2 (Frequency \leq 2.2 GHz)
	connector		VSWR ≤ 1.3 (Frequency > 2.2 GHz)
	connector	Auxiliary input connector,	TNC connector
General		Auxiliary output connector	
		Frequency	10 MHz
		Starting characteristic	$\leq 5 \times 10^{-8}$ /day
	Reference		After 10 minutes of warm-up, refered to frequency after 24 hours of warm-up $\leq 2 \times 10^{-8}$ /day
	oscillator	Aging roto	$\leq 2 \times 10^{-7}$ /year
	Uscillator	Aging rate	Refered to frequency after 24 hours of warm-up
		Temperature characteristic	5×10^{-8} (0 to 50°C) Refered to frequency at 25°C
		External standard input	10 MHz or 13 MHz (within ±1 ppm), Input level : 2 to 5 Vp-p
		· ·	For CDMA measurement software : Only 1 channel of input code channel
			824.04 to 848.97 MHz, 30 kHz step (IS-95A)
	Frequency range		1850.00 to 1909.95 MHz, 50 kHz step (J-STD-008)
	Frequency range		887.0125 to 888.9875 MHz, 898.0125 to 900.9875 MHz,
			915.0125 to 924.9875 MHz, 12.5 kHz step (ARIB STD-T53)
			For other measurement software : 300 kHz to 3 GHz
Power	Level range		For CDMA measurement software : -10 to +40 dBm (MAIN connector)
meter	g_		For other measurement software : 0 to +40 dBm (MAIN connector)
			For CDMA measurement software :
			±10 % (18 to 28°C, -10 to +40 dBm, averaged, MAIN connector)
	Accuracy		(After zero-point calibration and at signal-generator output level equal to or less than -53 dBm)
			,
	Input connector		For other measurement software : ±10 % (0 to 50°C, 0 to +40 dBm, MAIN connector) MAIN connector only
		Frequency range	10 MHz to 3 GHz
	Frequency	Resolution	1 Hz
	riequency	Accuracy	Accuracy of reference frequency ±100 mHz
			-133 to -13 dBm (MAIN connector)
		Level range	-133 to +7 dBm (Auxiliary output connector)
Signal	Output level		±1 dB (≥–123 dBm, 18 to 28°C), –3 dB (≥–133 dBm) (10 MHz ≤ Frequency ≤2.2 GHz)
generator		Level accuracy	±2 dB (≥–123 dBm, 18 to 28°C), –4 dB (≥–133 dBm) (2.2 GHz < Frequency)
			≤50 dBc (at CW), offset frequency : 100 kHz to 50 MHz
	Signal purity	Spurious	Where, Carrier frequency : Other than 1300 MHz to 1400 MHz, and 2000 MHz to 2100 MHz
			≤–40 dBc for all band
	_	Harmonics	≤-25 dBc (at CW)
	D . 1		Color TFT LCD display
	Display		Size : 8.4 inches
			Number of dots : 640 × 480
	Hard copy		Enables data hard copy on the display through a parallel interface.
			(applicable only for EPSON VP-series or equivalent) Function : This equipment is specified as a device, can be controlled from
			external controller. (excluding power switch and FD ejection key)
Others		GPIB	No controller function
			Interface function : SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0, and E2
	E dament a sector		Function : Conforms to the Centronics. Outputs printing data to a printer.
	External control	Devellel	Data line exclusive for output: 8
		Parallel	Control line: 4 (BUSY, DTSB, ERROR, PE)
			Connectors : D-sub 25 pins, Female (Equivalent to the connector of IBM-PC/AT built-in printer)
		RS-232C	Controlled from an external controller (except for the power switch)
			Baud rate : 1200, 2400, 4800, or 9600 bps
Dimensions	Dimensions		221.5 mm (H) × 426 mm (W) × 451 mm (D)
Mass	Mass		S27 kg (without any options)
Power supply	Power supply	raturo rango	100 to 120 V, 200 to 240 V 47.5 to 63 Hz, ≤300 VA Automatic voltage switch system 0 to 50°C
1	Operating temper		EN61326: 1997 / A2: 2001
			EN61326: 1997 / A2: 2001 EN61326: 1997 / A2: 2001
	Radiated Emission		EN61326: 1997 / A2: 2001 EN61000-3-2: 2000
		t Emission	
	Harmonic Curren		
	Harmonic Curren Electrostatic Disc	harge	EN61326: 1997 / A2: 2001
EMC	Harmonic Curren Electrostatic Disc Electromagnetic I	harge Field Immunity	EN61326: 1997 / A2: 2001 EN61326: 1997 / A2: 2001
EMC	Harmonic Curren Electrostatic Disc	harge Field Immunity	EN61326: 1997 / A2: 2001
EMC	Harmonic Curren Electrostatic Disc Electromagnetic I Fast Transient / E	harge Field Immunity	EN61326: 1997 / A2: 2001 EN61326: 1997 / A2: 2001 EN61326: 1997 / A2: 2001
EMC	Harmonic Curren Electrostatic Disc Electromagnetic I Fast Transient / E Surge	harge Field Immunity Burst	EN61326: 1997 / A2: 2001 EN61326: 1997 / A2: 2001 EN61326: 1997 / A2: 2001 EN61326: 1997 / A2: 2001

Table 1-5	Option 01:	Analog	Measurement
-----------	------------	--------	-------------

	Frequency range		10 MHz to 3 GHz
			-133 to -13 dBm (MAIN connector)
	Level range		-133 to +7 dBm (AUX connector)
		Frequency deviation	0 to 40 kHz, resolution : 10 Hz
		Accuracy	±5% of set value ±1 digit
		Accuracy	(Internal modulation frequency : 1 kHz, excluding residual FM)
		Internal modulation frequency	20Hz to 20 kHz
Signal		External modulation frequency	20Hz to 20 kHz
generator	FM modulation		±0.5 dB
		Frequency characteristics	(Refered to 1 kHz as reference, 0.3 to 3 kHz, frequency deviation : 4 kHz) +1 dB
			(Refered to 1 kHz as reference, 20 Hz to 20 kHz, frequency deviation : 4 kHz)
			< -50 dB
		Modulation distortion	(Internal modulation frequency : 1 kHz, frequency deviation : 5 kHz,
			demodulation band : 0.3 to 3 kHz)
		External modulation	Input level : 1 V peak (terminated voltage), input impedance : 600 Ω
		Range	20Hz to 20 kHz
	Frequency	Resolution	0.1 Hz
		Accuracy	Sychronized to standard crystal oscillator
		Level range	0.01 mV rms to 3 V rms (EMF) (main Output impedance : 600 Ω)
			0.01 mV rms to 0.3 V rms (EMF) (main output impedance : 50 Ω)
			1 μ V (output level \leq 4 mV) 10 μ V (output level \leq 40 mV)
		Resolution	$100 \mu\text{V}(\text{output level} \le 0.4 \text{V})$
AF oscillator			1 mV (output level ≤ 3 V)
(2 routes)			Unbalanced output : ±0.5 dB
. ,	Output	A*	Floating output : $\pm 2 \text{ dB}$ (frequency : 1 kHz, output level $\geq 1 \text{ mV}$)
		Accuracy*	Unbalanced output : $\pm 1 \text{ dB}$ (20 Hz \leq frequency \leq 20 kHz, output level \geq 1 mV)
			* Measured at < 30 kHz bandwidth
		Output impedance	Main Output : 600 Ω /50 Ω changeable, Unbalanced, BNC
		Waveform distortion	Mike Input use : 600 Ω (floating), DUT Interface
			< -50 dBc (frequency : 1 kHz, output level : 1 V)
			< -45 dBc (20 Hz \leq frequency \leq 20 kHz, output level : 1 V) * Measured at < 30 kHz bandwidth
	Noise generator		White noise through evaluation filter (ITU-T recommendation : G.227)
	-	Frequency range	300 kHz to 3 GHz
	Power meter	Level range	0 to +40 dBm (MAIN connector)
	(wide-band)	Accuracy	±10% after zero-point calibration
		Frequency range	10 MHz to 3 GHz
	Power meter	Level range	0 to +40 dBm (MAIN connector)
55 1	(narrow-band)	Accuracy	±10% (MAIN connector, after calibration with built-in wide-band power meter)
RF analyzer		Linearity	±0.3 dB (0 to -30 dB)
		Frequency range	10 MHz to 3 GHz -15 dBm to +40 dBm (MAIN connector)
	Frequency	Input level range	-40 dBm to +20 dBm (AUX connector)
	counter	Resolution	1 Hz
		Accuracy	±(Accuracy of standard crystal oscillator +10 Hz)
		Measurement method	Measurement by IF frequency, reception band : ±30 kHz
	Frequency range		10 MHz to 3 GHz
	Input level range		-15 dBm to +40 dBm (MAIN connector)
			-40 dBm to +20 dBm (AUX connector)
	Band limited filter		HPF: 50 Hz, 300 Hz (3-dB loss point)
		Frequency deviation	LPF : 3 kHz, 15 kHz (3-dB loss point) 0 to 20 kHz
FM/øM		Demodulation frequency range	20 Hz to 20 kHz
measurement		. , ,	1% of indicated value + residual FM
		Accuracy	(Demodulation frequency : 1 kHz)
	FM measurement	Froquonov obstactoristics	±0.5 dB
		Frequency characteristics	(Refered to demodulation frequency : 1 kHz as reference)
		Residual FM	8 Hz rms (demodulation band : 0.3 to 3 kHz)
		_	0.3%
			(Demodulation frequency : 1 kHz, frequency deviation:5 kHz,
			demodulation band : 0.3 to 3 kHz)

Section 1 General

Table 1-5	Option 01:	Analog	Measurement
-----------	------------	--------	-------------

(Cont.)

			(cont.)
		Phase deviation	0 to 10 rad
		Demodulation frequency range	300 Hz to 3 kHz
		Accuracy	1% of indicated value + residual ØM
			(Demodulation frequency : 1 kHz)
	- 14	Frequency characteristics	±0.5 dB
	øM measurement		(Refered to demodulation frequency : 1 kHz as reference)
		Residual øM	0.01 rad rms (demodulation band : 0.3 to 3 kHz)
		Demodulation distortion	0.50%
			(Demodulation frequency : 1 kHz, phase deviation : 5 rad,
			demodulation band : 0.3 to 3 kHz)
FM/øM		Frequency deviation	0 to 40 kHz (range : 4/40 kHz)
measurement		Demodulation frequency range	50 Hz to 10 kHz
		Output level	4 V peak (EMF) (for full-scale input of range)
		Output impedance	600 Ω
	ENA also as advitations	Frequency characteristics	±1 dB (refered to demodulation frequency : 1 kHz as reference)
	FM demodulation	Demodulation distortion	1%
	output		(Demodulation frequency : 1 kHz, frequency deviation : 4 kHz,
			4 kHz range, demodulation band : 0.3 to 3 kHz)
		Band limited filter	HPF: 300 Hz (3-dB loss point)
			LPF:3 kHz(3-dB loss point)
			De-emphasis : 750 µs
	Input impedance		600 Ω/100 kΩ changeable, Unbalanced, BNC
	Band limited filter		HPF : 400 Hz (for tone rejection)
			De-emphasis : 750 µs
	Evaluation filter		ITU-T P.53 and C-MESSAGE, selectable
	A 🗖 I a a I	Frequency range	30 Hz to 20 kHz
A	AF level	Input level range	1 mV rms to 30 V rms
Audio analyzer	measurement	Accuracy	±0.5 dB
	Distantian nata	Frequency range	100 Hz to 5 kHz
	Distortion rate	Input level range	30 mV rms to 30 V rms
	measurement	Accuracy	±1 dB (frequency : 1 kHz, distortion rate : 1%)
		Frequency range	30 Hz to 20 kHz
	AF frequency	Level range	30 mV rms to 30 V rms
1	measurement	Accuracy	±0.1 Hz
Mass		≤0.5 kg	

Section 2 Preparations Before Use

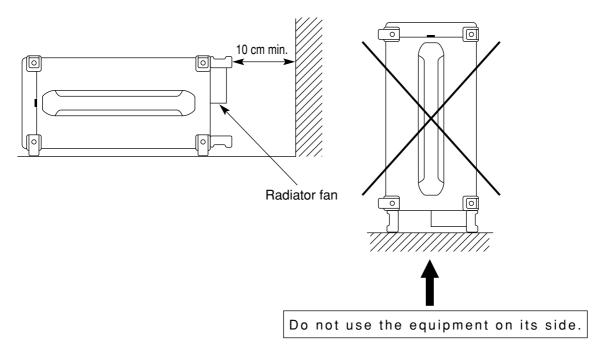
2.1	Installa	ation Site and Environmental Conditions	2-2
2.2	Safety	Measures	2-3
	2.2.1	Safety measures for power supply	2-3
	2.2.2	Maximum power to connector	2-4
2.3	Prepa	rations before Power-on	2-5
	2.3.1	Protective grounding	2-5
	2.3.2	Replacing fuse	2-7
2.4	Installa	ation	2-9
	2.4.1	Rack mounting	2-9
	2.4.2	Stacking	2-9
2.5	Preca	utions for Handling Storage Media	2-10
	2.5.1	Floppy disk	2-10

2.1 Installation Site and Environmental Conditions

The MT8801C Radio Communication Analyzer operates normally at temperatures from 0° to 50° C. However, for the best performance, the following locations should be avoided.

- Where there is severe vibration
- Where the humidity is high
- Where the equipment will be exposed to direct sunlight
- · Where the equipment will be exposed to active gases

To insure long-term trouble-free operation, the equipment should be used at room temperature and in a location where the power supply voltage does not fluctuate greatly.


WARNING A

 Prevention of failure due to condensation\lf the MT8801C is used at normal temperatures after it has been used or stored for a long time at low temperature, there is a risk of short-circuiting caused by condensation.

To prevent this risk, do not turn the power on until the MT8801C has been allowed to dry out sufficiently.

Fan clearance:

To suppress any internal temperature increase, the MT8801C has a fan on the rear panel as shown in the diagram below. Leave a gap of at least 10 cm between the rear panel and the wall, nearby equipment or obstructions so that fan ventilation is not blocked.

2.2 Safety Measures

This paragraph explains the safety procedures which should be followed under all circumstances to counter the risk of an accidental electric shock, damage to the equipment or a major operation interruption.

2.2.1 Safety measures for power supply

WARNING A

Before power-on:

Protective grounding

The MT8801C must be connected to ground. If the power is turned on without taking this countermeasure, there is a risk of receiving an accidental electric shock.

Power supply voltage

In addition, it is essential to check the power supply voltage. If an abnormal voltage that exceeds the specified value is input, there is an accidental risk of damage to the MT8801C and fire.

During power on:

 To maintain the MT8801C, sometimes it is necessary to make internal checks and adjustments with the top, bottom or side covers removed while power is supplied. Very-high, dangerous voltages are used in the MT8801C; if insufficient care is taken, there is a risk of an accidental electric shock being received or of damage to the equipment. To maintain the MT8801C, request service by service personnel who has received the required training.

In the following, special notes on safety procedures are explained for sections other than Section 2. To prevent accidents, read this section together with the related sections before beginning operation.

2.2.2 Maximum power to connector

The allowable maximum power to the MT8801C connectors are as follows.

Connector	Allowable maximum power
Main Input/Output	10 W (40 dBm)
AUX Input	100 mW (20 dBm)
AUX Output	Exclusive output connector, 0.5 mW (-3 dBm)
AF Input	30 Vrms
AF Output	Dedicated output connector, 6 Vrms (output impedance :
	600 Ω), 0.6 Vrms (output impedance : 50 Ω)
DUT Interface	TTL level
Reference Input	2 to 5 Vp-p
10MHz Buffered Output Dedicated output connector, TTL level	
Detector Output	Dedicated output connector, TTL level
BER Input connectors	TTL level
Ext Trig Input	TTL level
Ext Trig Output	Dedicated output connector, TTL level
Ext FM Input	±10 Vp-p
Demod Output	Dedicated output connector, ±8 Vp-p

CAUTION \triangle

Excessive power protection

Never apply power more than the allowable maximum power. Also, do not input external signal to the output connector.

2.3 Preparations before Power-on

The MT8801C operates normally when connected to 100 to 120 Vac, 47.5 to 63 Hz, or 200 to 240 Vac, 47.5 to 63 Hz AC power supply via the power inlet.

To prevent the following problems, take the necessary procedures described on the following pages before power is supplied.

- · Accidental electric shock
- Damage caused by abnormal voltage
- Ground current problems

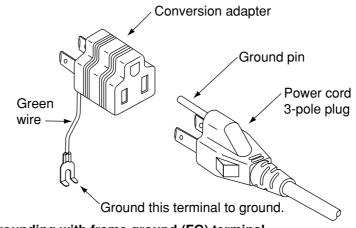
To protect the operator, the following WARNING and CAUTION notices are attached to the rear panel of the MT8801C.

NO OPERATOR SERVICE-ABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED PERSONNEL.

WARNING

Disassembly, adjustment, maintenance, or other access inside this instrument by unqualified personnel should be avoided. Maintenance of this instrument should be performed only by Anritsu trained service personnel who are familiar with the risks involved of fire and electric shock. FOR CONTINUED FIRE PROTECTION REPLACE ONLY WITH SPECIFIED TYPE AND RATED FUSE.

CAUTION Replace only with fuses of the specified type and rating. The use of improper fuses may cause fire.

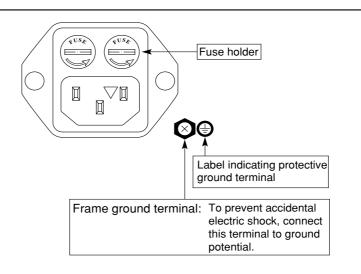

2.3.1 Protective grounding

(1) Grounding with 3-pole power outlet

The power supply polarity of the 3-pole (grounded, 2-pole type) matches that of the 3-core power cord plug. Therefore, the MT8801C is connected to ground potential when the power cord is connected to the plug. As a result, it is not necessary to connect the FG terminal to ground.

(2) Grounding with conversion adapter

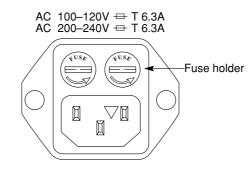
If a 3-pole power socket is not provided, use the 3-pole to 2-pole conversion adapter as shown in the figure below. Connect the green wire protruding from the 3 to 2 conversion adapter to ground.



(3) Grounding with frame ground (FG) terminal

If a 3-pole ac power supply outlet is not available and the green wire cannot be grounded, the protective frame ground (FG) terminal on the rear panel must be connected directly to ground potential.

WARNING A


 Prevention of danger using protective ground terminal If power is supplied without protective grounding, there is a risk of accidental electric shock. If a 3-pole power supply outlet is not available and the green wire cannot be grounded, the protective frame-ground (FG) terminal on the rear panel must be connected to ground potential before power is supplied to the MT8801C.

2.3.2 Replacing fuse

The MT8801C with standard accessories has two spare fuses (T6.3 A 250 V). Use these fuses to replace the blown fuses. If the fuses must be replaced, locate and remedy the cause before replacing the blown fuses.

Power supply system	Voltage range	Fuse rating plate	Fuse rating	Fuse name	Model/Order No.
AC100 V	100 – 120 V	T6.3 A	6.3 A, 250 V	T6.3 A 250 V	F0014
AC200 V	200 – 240 V	T6.3 A	0.5 A, 250 V	10.3 A 230 V	1.0014

WARNING A

Prevention of electric shock

Before replacing the fuses, turn the power switch off and remove the power cord from the power outlet. If the fuses are replaced while power is being supplied, there is a serious risk of electric shock.

 Confirmation before turning the power on After replacing fuses, the protective grounding mentioned above must be provided before turning the power on again, and the proper AC power supply voltage must be confirmed.

If the AC power supply voltage is improper, there is a risk of the internal circuits of the MT8801C being damaged.

CAUTION A

Check on replacing fuses

If the replacement fuses are not provided, obtain replacement fuses of the same rated voltage and current as the fuses in the fuse holders.

If the replacement fuses are not of the same type, they may not fit correctly, and failure will occur due to melting of the fuse.

When the rated voltage and current are over-sufficient, the fuses may not blow even if there is a risk of damage to the equipment by fire.

After performing the safety procedures, replace the fuses according to the following procedure.

Step	Procedure
1	Turn off the power switches on the front and rear panels, then remove the power cord from the power supply outlet.
2	Use a screwdriver to turn the fuse holder cap shown in the figure counterclockwise. The cap and fuse are removed together as a unit from the AC inlet.
3	Remove the fuse from the fuse cap and replace it with a spare fuse.
4	Return the fuse cap with the fuse to the fuse holder, then fasten it by turning it clockwise with the screwdriver.

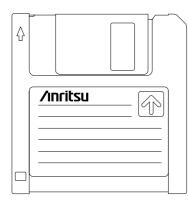
* Contact the Anritsu service department for fuses by specifying the model name, order number, name, and quantity.

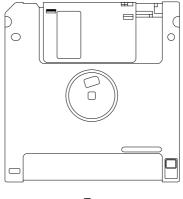
2.4 Installation

2.4.1 Rack mounting

The B0333D Rack Mounting Kit (sold separately, Table 1-3) is required to mount the MT8801C in a rack.

The installation method is included in the rack mount kit diagram.


2.4.2 Stacking


When stacking several MT8801Cs or stacking the MT8801C with equipment of the same width as the MT8801C, the B0332 Coupling Plate (sold separately, Table 1-3) are required.

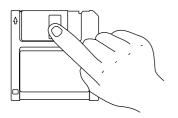
2.5 Precautions for Handling Storage Media

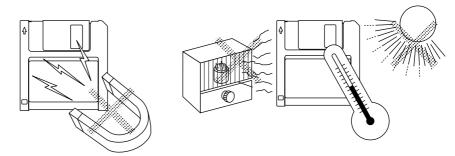
2.5.1 Floppy disk

The following explains how to handle the floppy disk media of this instrument.

Front

Rear




(1) Precautions

The plastic case of the 3.5-inch floppy disk has a shutter to protect the disk inside. When the disk is inserted into the disk drive, the shutter opens to expose part of the disk. Do not touch the shutter.

The following care must be taken for handling the disk.

- (a) When a floppy disk is inserted, and the lamp on the disk drive lights, do not eject the disk. Otherwise, the memory contents may be damaged, resulting in disk drive failure.
- (b) Do not directly touch the magnetic surface with your hand or any object.
- (c) Do not expose the disk to dust.
- (d) Do not place the disk near any magnetic objects.
- (e) Do not place the disk in direct sunlight or near heater.
- (f) Store the disk under a temperature range of 4° to 53°C, and humidity of 8 to 90% (no condensation).

(2) Write-protection tab

A write-protection tab is provided on the 3.5-inch floppy disk. Sliding this tab downward in the arrow direction beforehand prevents accidental writing and deletion. (A write operation is disabled in this state.)

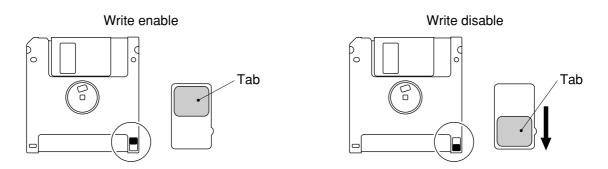


Fig. 2-2 Write-protection Tab for 3.5-inch Floppy Disk

(3) Inserting and ejecting the floppy disk

With the front surface of the floppy disk facing ups, fully insert the disk in the arrow direction until a clicking sound is heard.

To eject, press the eject button on the right side of the disk drive. Remove the disk after confirming that the lamp is off.

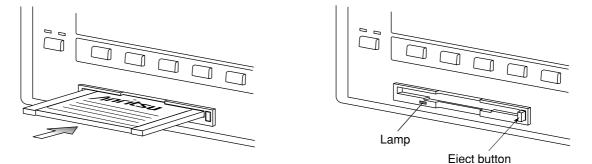


Fig. 2-3 Inserting and Ejecting the 3.5-inch Floppy Disk

Section 3 Panel Layout and Overview of Operation

3.1	1 Panel Layout		3-2
	3.1.1	Front panel layout	3-2
	3.1.2	Rear panel layout	3-4
	3.1.3	Panel layout	3-5
3.2	Overv	iew of Operation	3-6
	3.2.1	Overview of functions	3-6
	3.2.2	Overview of operation	3-8

3.1 Panel Layout

This paragraph describes the keys, switches, lamps, and connectors on the front and rear panels of the MT8801C Radio Communication Analyzer.

3.1.1 Front panel layout

This paragraph describes the keys, switches, lamps, connectors, and the rotary knob on the front panel.

No.	Display	Function
1	F1,F2,F3,F4,F5,F6	Main function keys
		Group of keys that select and execute the corresponding menus displayed of the LCD screen.
		When the [Main Func] F6 key is on, the menus for F1 to F5 are placed i MT8801C measurement mode.
		When the [Main Func] F6 key is off, the menus of F1 to F5 are displayed for the currently used screen function.
2	F7,F8,F9,F10,F11,F12	Function keys
		Group of keys that select and execute the corresponding menus displayed o the LCD screen. These screen functions are related to the current operation
3	Next Menu	
		Displays the next page of the function key menu.
	◀	Displays the next page of the main function key menu.
4		Key group for entering data.
	Shift	Switches the function of keys with a shift function. When the shift key pressed, the key's lamps goes on. Subsequent operation must be started wit this lamps on.
	BS	Back space key used to correct input data.
	0,.,-/+,1,2,3,	Numeric keys (ten-keypad) used for data input.
	A/4,B/5,C/6,D/7,E/8,F/9	These keys become alphanumeric keys at shift function activation.
	(Definition key group)	The data input using the numeric keys is defined with these keys.
	W/GHz/dBm/dB	Validates data when W/GHz/dBm/dB unit system data is input.
	mW/MHz/dBµ/sec	Validates data when mW/MHz/dBµ/sec unit system data is input.
	µW/kHz/mV/ms	Validates data when μ W/kHz/mV/ms unit system data is input.
	nW/Hz/µV/µs/Enter	Validates data when nW/Hz/ μ V/ μ s unit system data or non-unit system datis input.
5	Measure	Key group used to start measurement.
	Single	Key used to execute measurement once.
	Continuous	Key used to execute measurement continuously.

No.	Display	Function outline
6	Сору	Outputs display screen to the specified printer.(Hard copy function)
7	Cursor	Key group used to control the cursor on the LCD screen.
	Set	Opens the input window for data in the item pointed to by the cursor. After
		the completion of data entry, the window is closed.
	Cancel	Closes the window. The input data becomes invalid.
0	~ < > ~	Moves the cursor.
8	Step	Key group increment or decrement numeric data.
	^	Increments numeric data by the specified step value.
	\checkmark	Decrements numeric data by the specified step value.
		Entry using these keys is always validated every time the data incremented of decremented.
9	(Rotary knob)	Knob used for data input.
		When this knob is turned clockwise, the value increases and when it is turned counterclockwise, the value decreases. For input by the rotary knob, data validated each time it is incremented/decremented.
		This knob is also used in item selection.
10	Main Input/Output	Input/output connector for RF signal.(N type connector)
11	AUX	Auxiliary input/output connectors for RF signal.(TNC connector)
	Input	Auxiliary input connector for RF signal. This is used when the output level DUT is too low.
	Output	Auxiliary output connector for RF signal. This is used when the sensitivity DUT is too low.
12	AF Input	AF signal input connector for Option 01(Analog), (BNC connector)
	AF Output	AF signal output connector for Option 01(Analog), (BNC connector)
13	DUT Interface	Multi-pole connector used to control the DUT and measure the BER (D-SU connector, 25-pin, female).
14	(Floppy disk drive)	Slot in which the floppy disk is loaded for saving and recalling data, an loading system program.
15	Stby On	Change-over switch to turn the standby power supply on when the Line Inp on/off switch on the rear of this instrument is turned on. In Standby mode, power is only supplied to the reference crystal oscillator
16	Panel Lock	Invalidates all key operations except the Panel Lock key and the Stby C power supply switch on the front panel. In lock mode, the lamps on this key goes on.
17	Remote Local	Resets GPIB remote mode and returns to local mode.
		In GPIB remote mode, the lamps (Remote) goes on.
18	Preset	Initializes measurement parameters.

3.1.2 Rear panel layout

This paragraph describes the switch and connectors on the rear panel.

No.	Display	Function
19	0	Input switch for AC power supply. If this switch is turned off, the Power switch on the front panel cannot be turned on.
20	(Fuses)	Power supply fuses. For safety, always use fuses of the specified rating.
21		Frame grounding terminal. For safety, always ground this terminal.
22	(Memory card cover)	The memory card is built-in. Close the cover for card use.
23	(Power supply inlet)	For safety, always use a power supply of the rated voltage.
24	GPIB	GPIB interface connector.
25	Parallel	Parallel interface connector (conforms to Centronics type). Used to connect printer (D-SUB connector, 25-pin, female).
26	Serial	RS232C interface connector (D-SUB connector, 9-pin, female).
27	10 MHz Buffered Output	10 MHz reference signal (TTL level) for internal use is output (BNC connector).
28	10 MHz/13 MHz Reference In	put
		10 MHz or 13 MHz reference signal (2 to 5 Vp-p) is input (BNC connector).
29	Detector Output	RF burst signal detection output connector (BNC connector).
30	BER Input	Signal input connectors for measuring bit error rate (BNC connector).
	Data	Input connector for measurement data of bit error rate (BNC connector). TTL level signal is input.
	Clock	Input connector for clock of bit error rate (BNC connector). TTL level signal is input.
31	Ext FM Input	External FM modulation signal input connector for analog measurement, (BNC connector)
32	Demod Output	FM demodulated signal output connector for analog measurement, (BNC connector)
33	Ext Trig Input	Input connector for external trigger signal (BNC connector). TTL level signal is input.
34	Ext Trig Output	Output connector for external trigger signal (BNC connector). TTL level signal is output.
35	(Fan)	Instrument internal air cooling fan.
36	CDMA Reference Input	Input connector for CDMA clock signal (BNC connector). TTL level signal is input.
37	CDMA Reference Output	Output connector for CDMA clock signal (BNC connector). TTL level signal is output.
38	CDMA Timing	Connector for CDMA timing (D-SUB25 connector, 25 pins, female).

3.1.3 Panel layout

The front panel and rear panel layouts are shown in Figs. 3-1 and 3-2, respectively. The numbers in the diagram correspond to those in paragraphs 3.1.1 and 3.1.2.

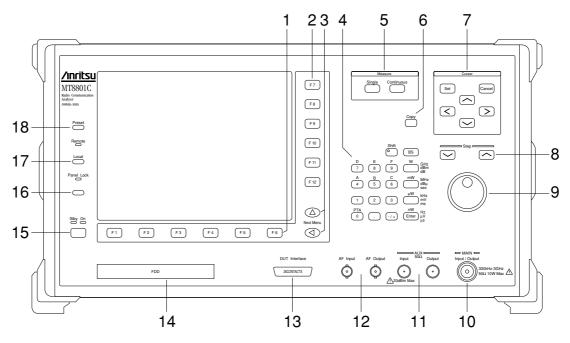


Fig. 3-1 Front Panel

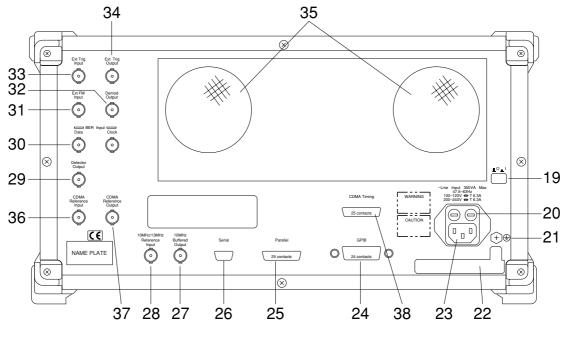


Fig. 3-2 Rear Panel

3.2 Overview of Operation

3.2.1 Overview of functions

With option 01 Analog Measurement installed, the MT8801C can test an analog-system mobile station (MS) for analog FM/ ØM modulation characteristics, and an electronic device for low frequency characteristics in the Analog Tester mode. Using the function menu displayed on the screen, carry out the following measurements:

1. Transmitter measurement---TX Measure mode

The MT8801C outputs the modulation signal (AF) at the microphone terminal (Mic) of the transmitter (TX) to control the Press-To-Talk (PTT) on/off.

The MT8801C also receives the RF signal from the transmitter to measure the items below:

- RF frequency
- RF power
- FM/ øM deviation
- Modulation signal (AF) level
- Modulation (AF) distortion
- Modulation (AF) frequency

2. Receiver measurement---RX Measure mode

The MT8801C outputs the RF signal to a receiver (RX).

The MT8801C also receives the demodulation signal (AF, external speaker) from the transmitter to measure the items below:

- Demodulation signal(AF) level
- Demodulation signal(AF) SINAD value
- Demodulation signal(AF) distortion
- Demodulation signal(AF) frequency

3. AF signal measurement---AF Measure mode

The MT8801C outputs an AF signal from the AF Output connector to the input terminal of the DUT.

The MT8801C also receives the AF signal from the DUT using the AF Input connector to measure the items below:

- AF Input signal level
- AF Input signal frequency
- AF Input signal distortion

In addition to the above functions, the MT8801C also supports the following functions:

• Save/recall

A maximum of 100 measurement conditions (parameters) can be saved on, or recalled from, a 3.5-inch floppy disk.

• Copy

The screen display can be printed out on the external printer via a parallel interface (Centronics).

• GPIB

The MT8801C can be remotely controlled using an external controller via a GPIB interface.

• RS-232C

The MT8801C can be remotely controlled using an external controller via a serial interface (RS-232C).

3.2.2 Overview of operation

At power-on operation begins in "TX&RX Tester" (Transmitter and Receiver test) status (Setup Common Parameter screen).

If measurement is to be started from another mode, or from other than a measurement mode, first select one of the main menu items, as shown below.

TX&RX Tester	(Transmitter and Receiver test)
Analog Tester	(Analog measurement)
Recall	(Parameter file recall)
Save	(Parameter file save)
Change System	(Measurement system change)
Instrument Set	(MT8801C main-frame setting)
Change Color	(Selection of screen color)
File Operation	(File retrieval/deletion/protect, FD initialization)

Describes the overview of operation in the analog measurement mode.

(1) Selection of analog measurement mode

Press the [Main Func On/Off]F6 key to turn on the main menu.

The 1st page of the main menu is displayed at the bottom of the screen, horizontally. Press the main menu [Analog Tester]F3 key to enter the analog measurement mode.

If the analog measurement mode is desired to be started from another mode, press the [Main Func On/Off]F6 key to turn on the main function. Then, the 1st page of the main menu is displayed at the bottom of the screen, horizontally. Press the main menu [Analog Tester]F3 key to enter the analog tester mode.

(2) Selection of measurement items

Items are set by using cursor keys ([\frown],[\frown],[<], [>]), and other function keys while observing the screen menu. Press the [Set] key to open the input window.

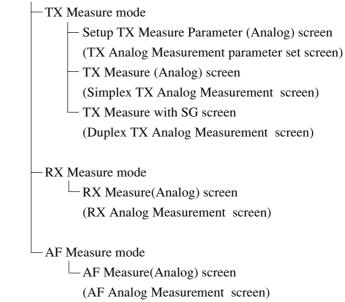
(3) Item input

For selection items displayed: Select the required value by using the cursor keys or rotary knob.

For mumeric values:

Input data using the numeric keys, and validate by pressing a unit key, [Enter] key, or [Set] key. The window closes.

(4) Outline of screen configuration


The screen configuration is shown below. A tree-shaped Hierarchical configuration of items below the main menu [Analog Tester] is indicated. (Details of operation are explained in Section 4. The screens, setup items and function key flowchart for each screen are summarized in Appendix A, "Screen and Function Key Transition Diagrams.")

[Overview of screens in analog tester mode]

• Analog Tester mode

└─ Setup Common Parameter (Analog) screen

Section 3 Panel Layout and Overview of Operation

• Recall mode

Recall Parameter screen

(Screen for recalling parameter-file/template-file/pattern-file)

- Save mode
 - Save Parameter screen

(Screen for saving parameter-file/template-file/pattern-file)

- File Operation mode
 - └─ File Operation screen

(Screen for file retrieval/deletion/protection-setup in FD, and FD initialization)

- Change System mode
 - L Change System screen

(Screen for changing TX&RX Tester mode measurement system)

• Instrument Setup mode

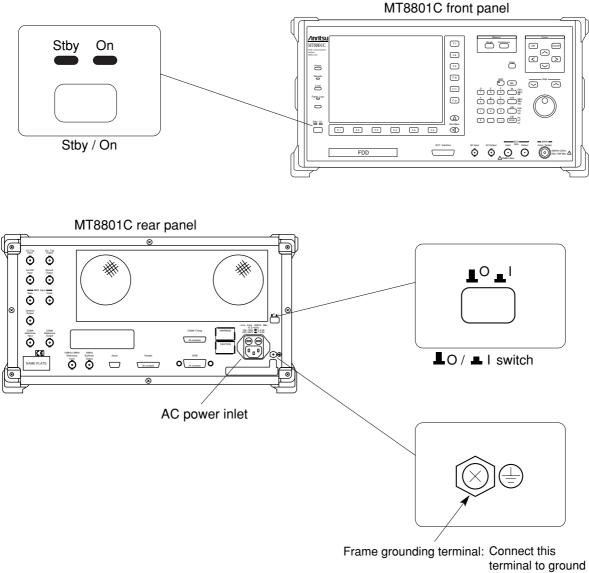
L Instrument Setup screen

(Screen for setting up RS232C/GPIB, etc. for MT8801C main frame)

Note:

Change Color mode (Selection for screen display color) is setup using the function key menu. There is no screen in Change Color mode.

Section 4 Operation


Describes the operation of the Option 01: Analog Measurement of the MT8801C Radio Communication Analyzer.

4.1	Turnin	g on and off the Power	4-2
	4.1.1	Turning on the Power	4-4
	4.1.2	Turning off the Power	4-6
	4.1.3	Setup state after power-on	4-6
4.2	Screer	n Descriptions	4-7
4.3	Prepar	rations	4-15
	4.3.1	Setup for transmitter measurement	
		(Simplex transmitter (TX) measurement by TX	X
		Measure(Analog) screen, Duplex transmitter	
		(TX) measurement by TX-Measure-with-SG	
		(Analog) screen)	4-15
	4.3.2	Setup for receiver measurement	
		(RX Measure screen)	4-21
	4.3.3	Setup for AF signal measurement	
		(AF Measure screen)	
	4.3.4	Calibration before measurement	
	4.3.5	Compensation for RF cable loss at transmitte	r
		measurement (TX Measure screen)	
		Setting User Cal Factor	4-24
	4.3.6	Setting the measurement system conditions:	
		Instrument Setup screen	4-25
	4.3.7	Setting the screen display color:	
	a	Change Color menu	4-30
4.4		g Common Measurement Parameter	
		up Common Parameter(Analog) screen	4-32
4.5		mitter (TX) Measurement	
		up TX Measure Parameter(Analog) screen,	
		easure (Analog) screen, TX Measure with SG	4.05
	(Analo	g) screen	
		g) screen Setting transmitter (TX) measurement parame	
	(Analo	bg) screen Setting transmitter (TX) measurement parame — Setup TX Measure Parameter(Analog)	eter
	(Analo 4.5.1	bg) screen Setting transmitter (TX) measurement parame — Setup TX Measure Parameter(Analog) screen	eter
	(Analo 4.5.1	bg) screen Setting transmitter (TX) measurement parame — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement	eter 4-35
	(Analo 4.5.1	bg) screen Setting transmitter (TX) measurement paramo — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure	eter 4-35
4.6	(Analo 4.5.1 4.5.2	bg) screen Setting transmitter (TX) measurement parame — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen	eter 4-35
4.6	(Analo 4.5.1 4.5.2 Receiv	bg) screen Setting transmitter (TX) measurement paramo — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen Ver (RX) Measurement	eter 4-35 4-37
	(Analo 4.5.1 4.5.2 Receiv —RX I	bg) screen Setting transmitter (TX) measurement paramo — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen ver (RX) Measurement Measure (Analog) screen	eter 4-35 4-37
4.6 4.7	(Analo 4.5.1 4.5.2 Receiv —RX I AF Sig	bg) screen Setting transmitter (TX) measurement parame — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen ver (RX) Measurement Measure (Analog) screen gnal Measurement	4-35 4-37 4-52
4.7	(Analo 4.5.1 4.5.2 Receiv —RX I AF Sig —AF N	bg) screen Setting transmitter (TX) measurement paramo — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen ver (RX) Measurement Measure (Analog) screen gnal Measurement Measure (Analog) screen	4-35 4-37 4-52
	(Analo 4.5.1 4.5.2 Receiv —RX I AF Sig —AF N Saving	bg) screen Setting transmitter (TX) measurement paramo — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen ver (RX) Measurement Measure (Analog) screen gand Measurement Measure (Analog) screen gand recalling parameter data:	eter 4-35 4-37 4-52 4-57
4.7	(Analo 4.5.1 4.5.2 Receiv —RX I AF Sig —AF N Saving Save F	bg) screen Setting transmitter (TX) measurement parame — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen ver (RX) Measurement Measure (Analog) screen gnal Measurement Measure (Analog) screen g and recalling parameter data: Parameter screen, Recall Parameter screen	eter 4-35 4-37 4-52 4-57 4-61
4.7 4.8 4.9	(Analo 4.5.1 4.5.2 Receiv —RX I AF Sig —AF N Saving Save F Opera	bg) screen Setting transmitter (TX) measurement paramo — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen ver (RX) Measurement Measure (Analog) screen gnal Measurement Measure (Analog) screen g and recalling parameter data: Parameter screen, Recall Parameter screen ting the file: File Operation screen	4-35 4-37 4-52 4-57 4-61 4-67
4.7 4.8 4.9 4.10	(Analo 4.5.1 4.5.2 Receiv —RX I AF Sig —AF N Saving Save F Operations Screen	bg) screen Setting transmitter (TX) measurement parame — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen ver (RX) Measurement Measure (Analog) screen gnal Measurement Measure (Analog) screen g and recalling parameter data: Parameter screen, Recall Parameter screen ting the file: File Operation screen n hard copy Copy	4-35 4-37 4-52 4-57 4-61 4-67
4.7 4.8 4.9	(Analo 4.5.1 4.5.2 Receiv —RX I AF Sig —AF N Saving Save F Operations Screen Setting	bg) screen Setting transmitter (TX) measurement paramo — Setup TX Measure Parameter(Analog) screen Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen ver (RX) Measurement Measure (Analog) screen gnal Measurement Measure (Analog) screen g and recalling parameter data: Parameter screen, Recall Parameter screen ting the file: File Operation screen	eter 4-35 4-37 4-52 4-57 4-61 4-67 4-70

4-1

4.1 Turning on and off the Power

The MT8801C has two power switches: The Stby/On switch on the front panel and $\underline{\blacksquare}^{\circ} \underline{\blacksquare}^{1}$ (main power) switch on the rear panel.

to prevent electric shock.

WARNING A

Protective grounding

If the power is turned on without protective grounding, operator runs the risk of electric shock. If the MT8801C does not have a three-pole (grounding type two-pole) power outlet, be sure to connect the frame grounding (FG) terminal on the rear panel or ground terminal of the accessory power cable to ground before turning on the MT8801C power.

CAUTION \triangle

Checking the power supply voltage
 If the AC power supply voltage is improper, abnormal voltage may damage the mechanism inside the equipment.
 Confirm that the AC power supply voltage is within the specified rating before turning on the MT8801C power.
 The following shows the specified power supply voltage and frequency:
 Voltage: 100 to 120 Vac or 200 to 240 Vac (Because an automatic input voltage rating switching system is used, the rating need not be switched.)

 Frequency: 47 to 63 Hz

For normal MT8801C operation, leave the power switch on the rear panel set to on when the AC power inlet is connected to the power outlet, and only use the Stby/On switch on the front panel to turn the power on and off.

Check the power display lamps at the lower-left part of the front panel as listed in the table below to confirm the power supply state.

		,	
Display lamp	Power standby display lamp (green)	Power on display lamp (orange)	
	(Stby)	(On)	
State			
Main power off	Off	Off	
Only main power	on On	Off	
All power supplies	on Off	On	

Table 4.1 Power Display Lamp Indications and Power Supply States

4.1.1 Turning on the Power

Perform the power-on procedure through warming up the internal reference oscillator to normal MT8801C operation in order of the following steps:

Step	Operation	Description			
1.	Connect the frame grounding terminal on the rear panel to ground.	• When using a three-pole power cable with a groundir terminal, the MT8801C need not be grounded.			
2.	Set the O I switch on the rear panel to O (Off).	• When the button is pressed down and set, it is I (On). Pre- the button again to release it. When the button is set Off, th AC power is turned off even if the power switch on the from panel is set On.			
3.	Connect the power cable jack to the	• Fully insert the power cable jack so that there is a gap of 1			
	AC power inlet on the rear panel.	2 mm as shown in the figure below.			
4.	Connect the power cable plug to the AC power outlet.	The store st			
5.	Set the O I switch on the rear panel to I (On)	• The Stby lamp on the front panel power switch lights.			
		• The reference crystal oscillator circuit built in the MT8801			
		starts to warmed up. Before operating the MT8801C und			
		low temperatures, warm up the crystal oscillator for 2			
		hours. The table below lists the stability of the cryst			
	oscillator based on the warm-up time.				
		Crystal oscillator stability			
		Item Stability			
		Starting After 30-minute characteristics operation 5 x 10 ⁻⁸ /day or less			
		Aging rate (after 24-hour operation) 2 x 10 ⁻⁸ /day or less			
		Stability at ambient temperature change of crystal oscillator (25°C ±25°C)			
	Stby On	Stby			
6.		• The On lamp on the front panel power switch			

Hold down the Stby/On switch on the front panel for a few seconds to set it On.

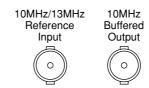
• Power is supplied to all circuits in the MT8801C, then the MT8801C becomes operable.

lights and the Stby lamp goes off.

Notes:

If neither power display lamp lights, check the following:

- 1. Are the power cables properly connected to the power inlet and power plug?
- 2. Are the specified fuses set in the fuse holders?
- 3. Is the power supply voltage correct?


Notes:

The left figure shows the reference signal input/output connectors on the MT8801C rear panel. The internal 10 MHz reference signal is output from the 10 MHz OUTPUT connector at TTL level. When the internal reference signal is not used, input an external reference signal satisfying the following conditions to the 10 MHz/13 MHz Reference Input connector:

- i) Frequency: 10 MHz ±1 ppm, signal level: 2 to 5 Vp-p
- ii) Frequency: 13 MHz ±1 ppm, signal level: 2 to 5 Vp-p

Set the reference frequency on the Instrument Setup screen (see paragraph 4.3.6) according to the external reference signal used as described in i) and ii) above.

Warm up the external reference signal equipment separately from warming up the MT8801C.

4.1.2 Turning off the Power

Turn off the power as described below.

(1) Normal power-off procedures

Step	Operation	Result check	
1.	Stby On	The On lamp of the Power switch on the front panel goes off, and the Stby lamp lights.Only the internal reference crystal oscillator is turned on.	Stby On
	Press the Stby/On switch on the front		
	panel for a few seconds to set it to Stby state.		

(2) Power-off procedures for storage or long stop

Step	Operation	Result check	
1.	Stby On Press the Stby/On switch on the front panel for a few seconds to set it to Stby state.	 The On lamp of the power switch on the front panel goes off and the Stby lamp lights. Only the internal reference crystal oscillator is turned on. 	Stby On
2.	Set the O I switch on the rear panel to the I (off) position.	 The AC power is turned off. Both the Stby and On lamps of the Power switch on the front panel go off. Only the internal reference crystal oscillator is turned on. 	Stby On

4.1.3 Setup state after power-on

- The Setup Common Parameter screen is displayed shortly after power-on. At this time, parameters can be set by specifying Power-On Initial on the Instrument Setup screen.(See paragraph 4.3.6.)
- If a short power failure occurs, the power switch on the front panel goes Off. In this case, press the power switch On again.

4.2 Screen Descriptions

This paragraph describes the common items displayed on the screen.

(1) Screen layout

The composition of the measurement screen is described below.

• Title display area

The type MT8801C, and date (**_**_**) time (**:**:**), or user-defined character string (title) are displayed on the top left line. These are set on the Instrument Setup Screen.

· Screen name display area

The screen name (paragraph 3.2.2(4)) and measurement system name are displayed on the second line from the top left.

· Measurement error messages display area

Messages for errors generated during measurement are reverse displayed on the third line from the top left.

There are 7 measurement error messages as follows. Messages are shown in high priority order.

[RF measurement]

Priority

High

Low

High	Input Level Over	RF input level exceeded the hardware limit.
↑	Level Over	Level too high
\downarrow	Level Under	Level too low
Low	Deviation under	Deviation too small

[AF measurement]

Input Level Over	AF input level exceeded the hardware limit
Level Over	AF level too high
Level Under	AF level too low

• RF input/output display

"M" or "A" displayed on the first line from the top center indicates the RF connector used.

- M: Main Input/Output
- A: AUX Input/Output
- Calibrated display

If the MT8801C is already calibrated, "C" is displayed on the second line from the top center.

This is appeared after executing calibration in the RF Level/Power on the TX Measure screen.

C: Calibrated

•	 User calibration factor setting display If a user calibration coefficient is being set, "U" is displayed on the third line from the top center. This is appeared when the user Cal. factor is set at the Setup TX Measure Parameter Screen. U: User Cal. Factor 				
•	Measurement mode display area The measurement mode is displayed on the first line from the top center. This is appeared depending on the Measure key (Continuous/Single). Measure: Continuous: Continuous measurement Measure: Single: Single (one time) measurement				
•	Storage mode display area The displayed value or waveform storage mode is displayed on the second line from the top right. This is the setting value of the storage mode on the current measurement screen. Storage: Normal: Normal display Average : Averaging (order of storage operations performed and total number of operations)				
 Menu display area The titles of up to six main function keys (F1 to F6) are displayed horizontally along the bottom. When the [Main Fucn on off] (F6) key on the right is set On, the main function menu is displayed. When the [Main Func on off] (F6) key is set Off, the menu is displayed according to the screen contents. Use the Next Menu [] key to display the next page. The display of 1 (first page), 2 (second page), or later above the F6 menu indicates the current page.					
	The titles of up to six function keys (F7 to F12) are displayed vertically along the right side. The display of 1 (first page), 2 (second page), or later under function key F12 indicates the menu page number. The current page is reverse displayed. If there are multiple pages, use the Next Menu []] key to display the next page under the F12 key.				

4.2 Screen Descriptions

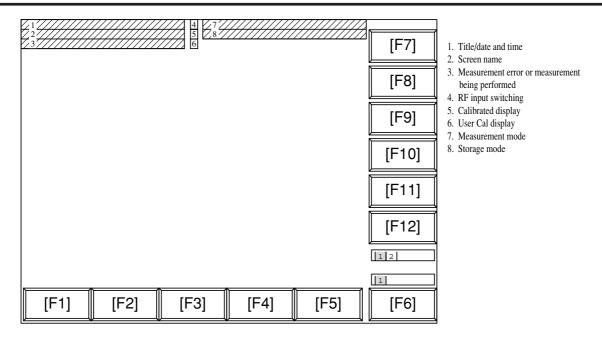


Fig. 4-1 Screen Layout

(2) Function keys

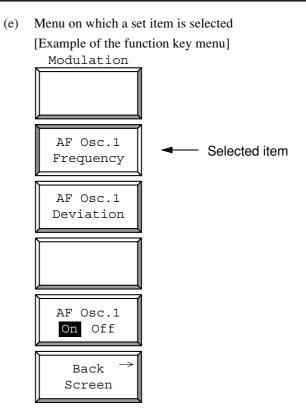
The symbols displayed on the top right of the function keys indicate the following functions:

- * : Indicates a lower level function key is displayed when this function key is pressed.
- \rightarrow : Indicates the screen is changed by pressing this function key.
- # : Indicates a window is opened to set a value using the ten-keypad, Step key, or rotary knob when this function key is pressed.
- (a) Menu for transition to lower hierarchy screen

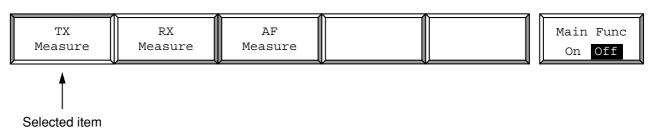
(The Back screen key switches the current screen to the higher hierarchy screen.)

(b) Menu for transition to lower hierarchy menu

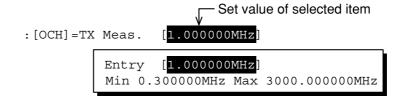
(c) Menu for opening the value setting window


• Function key menu that select setting item:

One of the multiple selection keys (displayed in the same menu hierarchy) can be selected. The top and right frames of the selected key are reverse displayed. (See para. (e) below.)

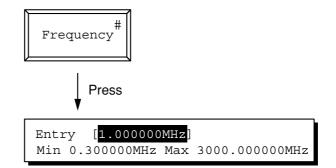

The setting values displayed in a key are changed alternately. When such a key is selected, the set value is reverse displayed. (See para. (d) below.)

(d) Menu on which set items are switched alternately (alternate key menu)


[Example of the main function key menu]

(3) Entering the data

- (a) Entering numeric data by opening/closing the window
- (i) Entering numeric data by moving the cursor and opening/closing the window


Move the cursor to the brackets enclosing the item to be set, then press the Set key. The value setting window shown below is opened and numeric data can be set.

When a value is entered using the ten-keypad, Step key, or encoder, then press the unit or Set key, the numeric data is defined and the window is closed

If the Cancel key, a function key or main function key is pressed while the window is open, the window is closed and the previously set value is displayed.

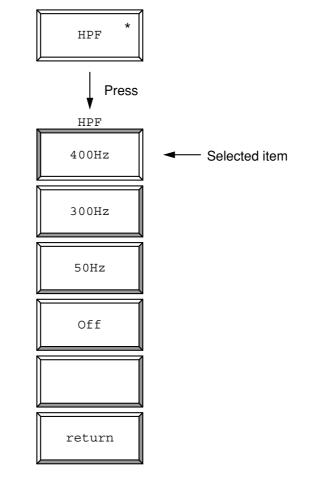
(ii) Entering numeric data by pressing a function key or main function key When the key marked # on the top right of the menu is pressed, the value setting window shown below is opened and numeric data can be set.

When a value is entered using the ten-key pad, Step key, or encoder, then press the unit or Set key, the numeric data is defined and the window is closed.

If the Cancel key, a function key or main function key is pressed while the window is open, the window is closed and the previously set value is displayed.

(b) Entering selection item by opening/closing the window

Move the cursor to the brackets enclosing the item to be set, then press the Set key. The selected item setting window shown below is opened and the selected item can be set.


When an item in the window is selected using the cursor keys and the Set key is pressed, the set value is defined and the window is closed.

(c) Entering selected items using alternate keys

Selection items are displayed on the function key menu. Each time one of these keys is pressed, set values are switched alternately. The currently selected item is reverse displayed.

(d) Entering selected items using function keys with lower hierarchy When the key marked * on the top right of the menu is pressed, the menu set of the lower hierarchy shown below is displayed.
Select an item from the menu set and press the corresponding function key. The menu display of the selected item is changed. When the return function key is pressed, display returns to the menu set of the higher hierarchy.

(c) Entering the titleSee paragraph 4.3.6, "Instrument Setup screen."

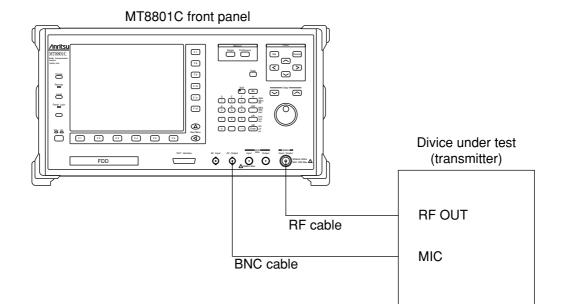
4.3 Preparations

This paragraph describes the preparations before measurement, as shown below.

- 1.Setup
- 2. Calibration before measurement
- 3. Compensation for RF cable loss at transmitter measurement--- Setting User Cal Factor
- 4. Setting measurement system conditions---Instrument Setup screen
- 5. Setting screen display color---Change Color menu

4.3.1 Setup for transmitter measurement (Simplex transmitter (TX) measurement by TX Measure(Analog) screen, Duplex transmitter (TX) measurement by TX-Measure-with-SG (Analog) screen)

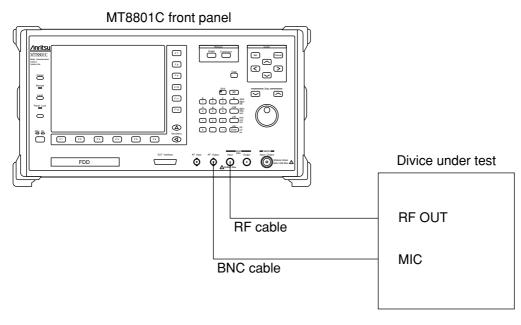
In the TX measurement, the MT8801C sends the AF signal to the DUT for modulating the transmission signal of the DUT, and receives the transmission signal. Then, modulates the signal to measure the modulation degree.


There are 2 methods for sending the AF signal to the DUT for modulation.1. Sending AF signal with AF Output connector (front panel)2. Sending AF signal with DUT Interface connector (front panel)Setup is described depending on these methods, below.

(a) Setup using AF Output connector (at front panel)

There are two connection modes depending on the transmission level ranges of the device under test:

(i) Condition: output level of the transmitter: +10 to 40 dBm


Setup:

Section 4 Operation

(ii) Condition: Output level of the transmitter: -30 to +5 dBm

Setup:

Note 1:

When measurement is performed using the Main Input/Output connector, highly accurate measurement is enabled by measurement and absolute value calibration using the power meter built in the MT8801C at RF Level/ Powermeasurement.

Note 2:

The RF receiving sensitivity can be increased for measurement by using the AUX Input connector.

The lowest level of the signal input to the AUX Input connector (-30 dBm) is 25 dB below that of the Main Input/Output connector (-5 dBm).

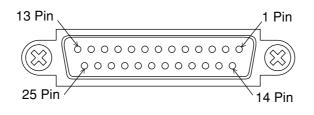
Note 3:

The AUX connector is a TNC connector. If the standard accessory of the MT8801C is used, also use the coaxial adapter (N-J \cdot TNC-P) and coaxial cable.

CAUTION \triangle

- The maximum input level of the AUX Input connector The maximum input level of the AUX Input connector is +20 dBm. If a signal whose level exceeds the specified value is input, the internal circuit of the MT8801C may be damaged.
- AUX Output connector
 - The AUX Output connector is the dedicated output connector of the signal generator in the MT8801C. If a transmitter signal is input in the AUX Output connector, the internal circuit may be damaged.

Section 4 Operation


[DUT Interface connector]

The DUT Interface connector is equipped on the bottom of the MT8801C front panel to receive signals for control and measurement.

The following lists the specifications and functions of the DUT connector and gives and notes on its use.

Specifications of the DUT Interface connector The DUT Interface connector is a 25-pin female D-SUB connector. Signal assignmen

Pin number	Signal name	Signal type	Specification	Direction
1	GND	Signal ground		
2	DUT_TXD12	Spare output	12 V level	$MT8801C \rightarrow DUT$
3	DUT_RXD	Spare input	5V TTL / 3V C-MOS / 12V	$MT8801C \leftarrow DUT$
4	DUT_RTS12	Spare output	12 V level	$MT8801C \rightarrow DUT$
5	DUT_CTS	Spare input	5V TTL / 3V C-MOS / 12V	$MT8801C \leftarrow DUT$
6	AF_SHELL	AF signal output (balanced output -)		$MT8801C \rightarrow DUT$
7	GND	Signal ground		
8	DUT_RTS5	Spare output	5 V TTL level	$MT8801C \rightarrow DUT$
9	DUT_IN0	Spare input	5 V TTL/3 V C-MOS level	$MT8801C \leftarrow DUT$
10	DUT_IN1	Spare input	5 V TTL/3 V C-MOS level	$MT8801C \leftarrow DUT$
11	DUT_IN2	Spare input	5 V TTL/3 V C-MOS level	$MT8801C \leftarrow DUT$
12	DUT_IN3	Spare input	5 V TTL/3 V C-MOS level	$MT8801C \leftarrow DUT$
13	PRSS_TLK0	Press talk switch 0	Current capacity: 0.5 A or less	$MT8801C \rightarrow DUT$
14	DUT_OUT0	Spare output	5 V TTL/3 V C-MOS level	$MT8801C \rightarrow DUT$
15	DUT_OUT1	Spare output	5 V TTL/3 V C-MOS level	$MT8801C \rightarrow DUT$
16	DUT_OUT2	Spare output	5 V TTL/3 V C-MOS level	$MT8801C \rightarrow DUT$
17	DUT_OUT3	Spare output	5 V TTL/3 V C-MOS level	$\rm MT8801C \rightarrow \rm DUT$
18	AF_SIGNAL	AF signal output (balanced output +)		$MT8801C \rightarrow DUT$
19	DUT_TXD5	Spare output	5 V TTL level	$MT8801C \rightarrow DUT$
20	12VOUT	+12 V power output	12 V, 50 mA or less	$MT8801C \rightarrow DUT$
21	BCLK_IN	BER measurement clock	5 V TTL/3 V C-MOS level	$MT8801C \leftarrow DUT$
22	BDAT_INBER	Measurement data	5 V TTL/3 V C-MOS level	MT8801C ← DUT
23	DUT_TXD3	Spare output	3 V C-MOS level	$MT8801C \rightarrow DUT$
24	DUT_RTS3	Spare output	3 V C-MOS level	$MT8801C \rightarrow DUT$
25	PRSS_TLK1	Press talk switch 1	Current capacity: 0.5 A or less	$MT8801C \rightarrow DUT$

2) Pin descriptions

2.1) Signal ground (GND)

This signal ground is the common grounding terminal of all signals using this connector.

2.2) 12 V power output

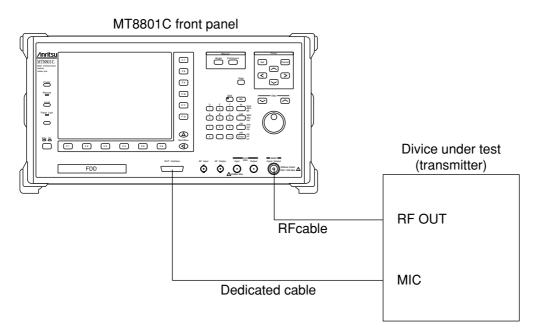
The 12 V power output can be used for the DUT or external interface for the DUT.

The maximum current capacity of this output is 50 mA.

2.3) AF signal output

AF signal output is used for mudulation. (Balanced output) Use the shield wire for the MIC input cable. Ground the outer sheath.

2.4) Press talk switch


This terminal is used to control the press-to-talk switch of the DUT.

2.5) BER measurement signal

The BER measurement signal is applied to this terminal to receive the data output from the DUT when measuring receiving sensitivity of the digital radio. Since this terminal is not used for the Option 01 (Analog measurement), leave this terminal unconnected.

2.6) Spare input and output

Spare input and output are terminals provided for future expansion. The MT8801C (Analog measurement) does not support these terminals. Leave these terminals unconnected.

(b) Setup using DUT Interface connector (at front panel)

Fig. 4-4

4.3.2 Setup for receiver measurement (RX Measure screen)

Send the modulated RF test signal from the MT8801C to the DUT which demodulates the signal, input the demodulated result to the MT8801C, then measure the distortion ratio.

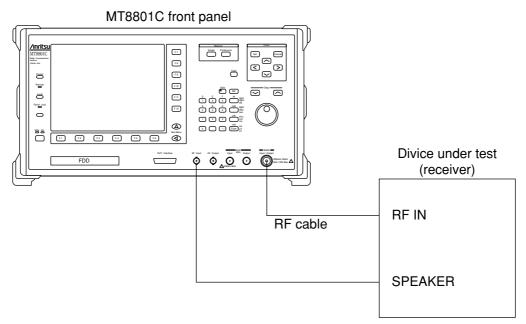


Fig. 4-5

Note:

Levels of RF signal output from the MT8801C are as follows:

Main: -133 to -13 dBm

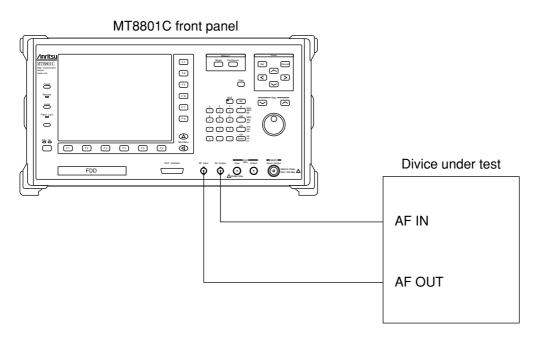
AUX Output: -133 to +3 dBm: The maximum level is 20 dB higher than that of the Main connector.

CAUTION A

AUX Output connector

The AUX Output connector is the dedicated output connector of the signal generator in the MT8801C. If a transmitter (DUT) signal is input in the AUX Output connector, the internal circuit may be damaged.

About switching the RF measurement connector
The MT20210 has the Main lawy/Qutrent AUX lawy


The MT8801C has the Main Input/Output, AUX Input, and AUX Output connectors for measuring RF signal. The MT8801C selects and uses any one of them. (The used connector is selected by the RF Input/Output on the Instrument Setup screen.)

Use the selected connector for measurement.

Note that when the Main Input/Output connector is used for RX measurement, the signal to be measured may leak to the AUX Output connector.

4.3.3 Setup for AF signal measurement (AF Measure screen)

Setup:

4.3.4 Calibration before measurement

The MT8801C has two types of power measurement functions. For high precision measurements, calibrate the MT8801C as shown below.

(a) Power meter function

Select Power Meter for Power measure method on the Setup TX Measure Parameter screen to use the power meter function.

The power meter function uses a thermo-couple to measure the average power with high precision.

Calibrate the MT8801C at the zero power point for high-precision measurements.

Zero-point calibration: Disconnect anything from the Main Input/Output connector to set no input power, and press the [Zero Set] F11 key to automatically calibrate the power meter at the zero power point.

Note:

The power meter function is effective only when the Main connector is used.

(b) IF Level Meter function

Select IF Level Meter for Power measure method on the Setup TX Measure Parameter screen to use the IF level meter function, which measures the level with an excellent linearity. For high precision measurement, internal calibration is required.

There are two types of internal calibrations of the Adjust Range and Manual Calibration, as described below.

Adjust Range:	Optimizes the internal RF ATT, A/D input level, and
	power meter range of the MT8801C for the signal to be
	measured.
Manual Calibration:	Calibrates the measured power value in the RF Power
	screen using the MT8801C built-in power meter.
	Pressing the Calibration Cancel key clears the calibration
	factor to 0 dB.
	The calibration factor may become incorrect when the
	internal temperature rises, the ambient temperature
	changes, the measurement frequency changes etc For
	precise measurement of the TX power, perform Manual
	Calibration at that time.

Notes:

- 1. Manual Calibration is effective only when the Main connector is used.
- 2. If the MT8801C input level is small or the input frequency does not match the setup frequency, the Adjust Range and Manual Calibration may not be performed properly.
- 3. Execute Adjust Range and Manual Calibration while the measurement signals are input stationary.
- 4. Performing Manual Calibration results in an error (corrected data cannot be generated), and calibration factor of the Manual Calibration (held before the execution) is lost.

4.3.5 Compensation for RF cable loss at transmitter measurement (TX Measure screen)

--- Setting User Cal Factor

When conducting the transmitter (TX) measurement, set the loss of the RF cable connecting the MT8801C and transmitter under test as a correction value (User Cal Factor) to measure RF power in the transmitter under test.

Step	Key operation	Description
1.	[Main Func on off]F6	Sets Main Func on to display the first page of the Main Menu at the bottom of the screen.
2.	[Analog Tester]F1	Displays the Setup Common Parameter (Analog) screen.
3.	[TX Measure]F1	Displays the first page of the TX Measure menu.
	Next Menu [🛌]	Displays the second page of the TX Measure menu.
	[Setup TX Parameter]F7	Displays the Setup TX Measure Parameter (Analog) screen.
4.	Cursor [🖍] [🗸]	Moves the cursor to User Cal Factor.
5.	[Set][-/+] [0] [1] to [9] [BS]	Enter the RF cable loss.
		Example: For 5 dB loss, enter 5.00 dB.
6.	[Enter]	Defines the entered value.
7.	[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

4.3.6 Setting the measurement system conditions: Instrument Setup screen

Set the standard frequency of the measurement system (10 MHz or 13 MHz), RF connector (Main or AUX), screen title/date/time display, interface (GPIB or RS-232C), printer (ESC/P), and alarm (on or off) on this screen. Procedure for transition to the Instrument Setup screen

Step	Key operation	Description
1.	[Main Func on off]F6	Set Main Func on.
		The first page of the Main Menu appears at the bottom of the screen.
	Next Menu [◀]	Displays the second page of the Main Menu.
2.	[Instrument Setup]F2	Sets Instrument Setup mode.
		The Instrument Setup screen appears.
		The Instrument Setup function key menu appears on F7 to F12.

MT8801 s << Instrument	99/10/12 12:34:56 5 Setup >>			Instrument #
Frequency	Reference Frequency	:	[10MHz]	Date
RF Input/Ou	ltput	:	[Main]	# Time
Display	Display Title Title Clock Display	:	[Date/Time] [PHS TX & RX Tester] [YY/MM/DD]	Power On* Initial
Interface	Connect to Controller	:	[GPIB]	
GPIB	Address	:	[01]	
RS232C	Baud Rate Parity Data Bit Stop Bit	: :	[2400bps] [Even] [8bits] [1bit]	
Hard Copy	Output Device Type		[Printer(Parallel)] [ESC/P]	
Alarm		:	[On]	
				1
				Main Func On Off

Fig. 4-7 Instrument Setup Screen

• Set the following items:

Item	Range	Initial value
Frequency		
Reference Frequence	N/	
Reference Prequenc	10 MHz, 13 MHz	10 MHz
RF Input/Output	Main, AUX	Main
Display		
Display Title		
	User Define, Date/Time, Off	User Define
Title	User Define, Date/Time, Off	
	(32 alphanumeric characters) (*1)	
Clock Display		
	YY/MM/DD (year, month, day)	
	MMM-DD-YY (month, day, year)	
	DD-MMM-YY (day, month, year)	YY/MM/DD (year, month, day)
Interface		
Connect to Controll	er	
	GPIB, RS-232C	GPIB
GPIB		
Address	00 to 30	01
RS232C		
Baud Rate	1200, 2400, 4600, 9600 (bps)	2400
Parity	Even, Odd, Off	Even
Data Bit	7 bits, 8 bits	8 bits
Stop Bit	1 bit, 2 bits	1 bit
Hard Copy		
Output device	Printer (Parallel), File	Printer (Parallel)
Туре	ESC/P, HP2225 for Printer (Parallel)	ESC/P
1 ypc	BMP (B&W) for File	
4.1		
Alarm	On, Off	On

*1

Entering the title:

A title up to 32 characters can be entered in the title display area. (User Define) MT8801C**_**_(date)**:**:(time) is displayed as an initial value. (Date/Time)

Enter a title according to the following steps. (User Define)

Step	Key operation	Description
1.	Cursor [🖍] [🗸]	Moves the cursor to the Title entry area.
2.	[Set]	Opens the Tile entry window.
3.	Step [🖍] [🗸]	Moves the cursor into position in the Title entry area to enter character.
4.	Cursor [<] [>]	Select a character.
5.	[Enter]	Defines the character.
6.	[BS]	Correct any incorrect character.
7.		Repeat steps 3 to 6 to enter all characters in the Title entry area.
8.	[Set]	Defines the entered character string.

• Function keys

Main function key:	None
Function keys:	
[Date]F7:	Opens the date entry window.
[Time]F8:	Opens the time entry window.
[Power On Initial]F9:	Displays the Power On menu to select Initialization modes, which are classified into
	Previous Status and Recall File.
	Initial value: Previous Status
	When Previous Status mode is selected, the parameters after power-on retain the status
	held before the previous power-off.
	When Recall File mode is selected, the parameters after power-on are set by reading the
	specified file.
[Previous Status]F7	Sets the parameters after power-on to the status held before the previous power-off.
[Recall File]F8	Accesses the floppy disk to call the parameter file list.
[File No.]F9	Opens the parameter-file setting-location (number) entry window.
	File No.: 0 to 99, Initial value: 0
[return]F12	Returns to the previous menu.

-

• Selecting Power On Initial mode

The following describes how to select parameter initialization mode after power-on.

1. Selecting Previous Status mode

Step	Operation
1.	Press the [Power On Initial] (F9) key.
2.	Press the [Previous Status] (F7) key.
3.	Press the [return] (F12) key to define the parameters then return to the previous menu.

2. Selecting Recall File mode (being developed)

Step	Operation	
1.	Press the [Power On Initial] (F9) key.	
2.	Set the floppy disk (on which parameters to be read before power-on are written) in the floppy disk drive.	
3.	Press the [Recall File] (F8) key. (Access the floppy disk to call the parameter list file.)	
4.	Display the parameter file to be set on the screen.	
5.	Press the [File No.] (F9) key. (Open the parameter-file setting-location [number] window.)	
6.	Enter the number of the parameter file to be set.	
7.	Press the [Set] key to define the parameters, then press the [return] (F12) key to return to the previous menu.	

Notes:

- If no floppy disk is set before power-on or a floppy disk other than that used at setting is used, parameters may be set in Previous Status mode or different parameters may be set.
- The ambient temperature range of the floppy disk is specified as 5 to 45 °C. If a set temperature is outside the specified range, operation is not guaranteed.

• Changing the time and date of the built-in clock

1. Changing the date

	Step	Operation
1.	[Date] F7	Opens the date setting window.
		Displays the current date and time of the built-in clock.
2.	Cursor [🖍] [🗸]	Moves the cursor to the part to be changed.
3.	[Set]	Opens the setting window.
4.	0 to 9, [BS]	Sets the data.
5.	[Set]	Closes the setting window and establishes the set value.

2. Changing the time

	Step	Operation
1.	[Date] F7	Opens the time setting window.
		Displays the current time of the built-in clock.
2.	Cursor [🖍] [🗸]	Moves the cursor to the part to be changed.
3.	[Set]	Opens the setting window.
4.	0 to 9, [BS]	Sets the data.
5.	[Set]	Closes the setting window and establishes the set value.

Note:

To stop changing the date or time of the built-in clock

To stop changing the date or time after opening the setting window of the builtin clock, press the [Cancel] key in the above Step 4 or 5 (do not use the [Set] key). If the [Set] key is pressed again after the date and time window is opened, the value on the setting window is set again. The date and time window remains in the state when the window was opened. Therefore, if the [Set] key is pressed without changing the display on the window, the date and time of the built-in clock are delayed.

4.3.7 Setting the screen display color: Change Color menu

To set a screen color, display the Change Color menu as follows. (The F7 to F12 function keys menu changes to the Change Color menu, but the screen does not change.)

Step Key operation	Description
1. [Main Func on off]F6	Sets Main Func on.
	The first page of the Main Menu appears at the bottom of the screen.
Next Menu [◀]	Displays the second page of the Main Menu.
2. [Change Color]F3	Sets Change Color mode.
	The Change Clr. function key menu appears on F7 to F12.
3.	Use the function key on the next page to set a color.
4. [return]F12	Returns to the previous menu.

• Function keys

Main function key:		None
	Function keys:	
	Change Color menu:	Initial value: Color Pattern 1
	[Color Pattern 1] F7:	Selects Anritsu-specified color 1.
	[Color Pattern 2] F8:	Selects Anritsu-specified color 2.
	[Color Pattern 3] F9:	Selects Anritsu-specified color 3.
	[Color Pattern 4] F10:	Selects Anritsu-specified color 4.
	[Define User Color] F11:	Displays the Define Clr. menu to set a user-specified color.
	[Copy Color Ptn from] F7 Displays the [Copy from] menu to select an Anritsu-specified color as an original
		color to set a user-specified color.
	[Color Pattern 1	F7: Selects Anritsu-specified color 1 as an original color.
	[Color Pattern 2	F8:Selects Anritsu-specified color 2 as an original color.
	[Color Pattern 3	F9:Selects Anritsu-specified color 3 as an original color.
	[Color Pattern 4	F10: Selects Anritsu-specified color 4 as an original color.
	[return] F12:	Returns to the previous menu.
	[Select Item frame **] F8: Selects the screen configuration field to set a display color.
		Use a number ** from 0 to 16 for this setting. The number increases in step of one
		by pressing this key.
	[Red *] F9:	Set red intensity of the item frame selected by F8.
	[Green *] F10:	Set green intensity of the item frame selected by F8.
	[Blue *] F11:	Set blue intensity of the item frame selected by F8.
	[return] F12:	Returns to the previous menu.
	[return] F12:	Returns to the previous menu.

• Relation between screen assignment and number ** in [Select Item Frame **] F8 key			
[Select Item Frame 0]	Back-screen of function keys		
[Select Item Frame 1]	Back-screen of the main function keys		
[Select Item Frame 2]	Display frame of function and main function keys		
[Select Item Frame 3]	Characters and display frame of function and main function keys		
[Select Item Frame 4]	Back-screen of waveform display		
[Select Item Frame 5]	Scale line and frame of waveform display		
[Select Item Frame 6]	Waveform display (1)		
[Select Item Frame 7]	Waveform display (2)		
[Select Item Frame 8]	Display other than function and main function keys		
[Select Item Frame 9]	Characters right over the main function keys		
[Select Item Frame 10]	Measurement execution error display		
[Select Item Frame 11]	Template and zone frames		
[Select Item Frame 12]	Marker		
[Select Item Frame 13]	Window back-screen		
[Select Item Frame 14]	Window shade and characters		
[Select Item Frame 15]	(Not used)		
[Select Item Frame 16]	Back-screen		

4.4 Setting Common Measurement Parameter — Setup Common Parameter(Analog) screen

Set the common measurement parameters on Setup Common Parameter(Analog) screen befor the TX/RX/AF-analog signal measurements.

Procedure for transition to the Setup Common Parameter(Analog) screen:

Step Key operation	Description
1. [Main Func on off]F6	Sets Main Func on.
	The Main-menu 1st page appears at the bottom of the screen.
2. [Analog Tester]F3	Displays the Setup Common Parameter(Analog) screen.

<< Setup Common Parameter	(Analog) >>	TX Measure →
Channel spacing	: [[] H] = TX Meas. [100.0000001Hz] RX Meas. [100.0000001Hz] : [25.000kHz]	TX Measure
RF Level TX Measure Ref Level TX Power meter range RX Measure Output Level	: [40.0dBm]	
AF level input Range Impedance	: [30V] : [100kQ]	→ TX Measure with SG
AF level output Impedance	: [600Ω]	
		12
TX RX Measure Measure	AF Measure	Main Func On Off

Fig. 4-8 Setup Common Parameter(Analog) screen

4.4 Setting Common Measurement Parameter

Item	Range	Initial value	
RF Frequency			
Channel & Frequency	Channel : 0 to 9 999 CH	0 CH	Note 1
	TX Frequency : 0.300 000 to 3 000.000 000 MHz	100.000 000 MHz	
	RX Frequency : 0.300 000 to 3 000.000 000 MHz	100.000 000 MHz	
Channel spacing	-9 999.999 to 9 999.999 kHz	25.000 kHz	
RF Level			
TX Measure Ref Level	Main connector: -10 to 42 dBm	30.0 dBm	
	AUX connector: -30 to 22 dBm		
TX Power meter range	40.0 dBm/30.0 dBm/20.0 dBm/10.0 dBm	40.0 dBm	Note 2
RX Measure Output Level	Main connector: -133.0 to -13.0 dBm	-55.0 dBm	
	AUX connector: -133.0 to +7.0 dBm		
AF Level input			
Range	30 V/4 V/400 mV/40 mV	30 V	
Impedance	100 kΩ/600 Ω	100 kΩ	
AF Level output			
Impedance	50 Ω/600 Ω	600 Ω	

Note 1 :

Any combination of frequency with Channel can be used.

When the Channel is changed, the frquency changes automatically with keeping the channel spacing.

However, if the Channel is changed using the ten-key pad, the frquency does not change.

When the frequency is set, the channel set value does not change.

Note 2 :

Display value of TX Power Meter range [dBm] = TX Power Meter set value[dBm] + User Cal Factor[dB] (User Cal factor[dB] is set on the Setup TX Measure Parameter(Analog) screen.)

 Main-function keys: 	
[TX Measure]F1	Displays the TX Measure(transmitter measurement) function keys on F7 to F12.
[RX Measure]F2	Displays the RX Measure(receiver measurement) function keys on F7 to F12.
[AF Measure]F2	Diaplays the AF Measure(AF signal measurement) function keys on F7 to F12.
• TX Measure(transmitter me	asurement) function keys:
1st page	
[TX Measure]F7	Displays the TX Measure screen.
[TX Measure with SG]F10	Displays the TX Measure with SG screen.
2nd page	
[Setup TX Param.]F9	Displays the Setup TX Measure Parameter(Analog) screen.
• RX Measure(receiver measure)	urement) function key:
[RX Measure]F7	Displays the RX Measure screen.
• AF Measure(AF signal mea	surement) function key:
[AF Measure]F7	Displays the AF Measure screen.

4.5 Transmitter (TX) Measurement — Setup TX Measure Parameter(Analog) screen, TX Measure (Analog) screen, TX Measure with SG (Analog) screen

4.5.1 Setting transmitter (TX) measurement parameter — Setup TX Measure Parameter(Analog) screen

Set the TX measurement parameters on Setup TX Measure Parameter(Analog) screen befor the TX-analog signal measurements. Procedure for transition to the Setup TX Measure Parameter(Analog) screen:

Step	Key operation	Description
1.	[Main Func on off]F6	Sets the Main Func on to display the Main-Menu 1st page at the bottom of the screen.
2.	[Analog Tester]F3	Displays the Setup Common Parameter(Analog) screen.
3.	[TX Measure]F1	Displays the TX Measure (transmitter measurement) function-key 1st page on F7 to F12.
4.	Next Menu[🔶]	Displays TX Measure function-key 2nd page on F7 to F12.
5.	[Setup TX Param.]F9	Displays the Setup TX Measure Parameter(Analog) screen.

<< Setup TX Measure Paramete	er (Analog) >>	TX Parameter
User Cal Factor	: [0.00dB]	
Power measure method	: [Power Meter]	
RF measure mode	: [All]	
Demod. output terminal (ro Demodulation	ear panel) : FM	
Range	: [40kHz] : [300Hz]	→ Deal/
LPF De-emphasis	: [3kHz] : [0ff]	Back Screen
Squelch	: [Auto]	1
		1
		Main Func
		On Off

Fig. 4-9 Setup TX Measure Parameter(Analog) screen

• Set the following items.

Item	Range	Initial value	
User Cal Factor	-30.00 to 30.00 dB, 0.01dB step	0.00 dB	
Power measure method	Power meter, IF Level meter	Power meter	Note 1
RF measure mode	All, RF only	All	Note 2
Demod. output terminal			
Range	40 kHz, 4 kHz	40 kHz	
HPF	300 Hz, off	300 Hz	
LPF	3 kHz, off	3 kHz	
De-emphasis	on, off	off	
Squelch	Auto, off	Auto	

Note 1 :

IF Level Meter is fixed to be used for AUX Input.

Note 2 :

In the RF Only mode, only both the RF Freq. and RF Power are measured for transmitter measurement.

AF values (Deviation, AF Level, AF Freq., and Distortion) are not measured. These not-measured AF items are indicated by - mark.

- Main-function key: None
- Function key:

[Back Screen]F12

Returns to the Setup Common Parameter (Analog) screen.

4.5.2 Transmitter (TX) measurement — TX Measure (Analog) screen, TX Measure with SG (Analog) screen

Simplex transmitter (TX) analog measurement is performed on the TX Measure (Analog) screen. (Para. (1))

Duplex transmitter (TX) analog measurement is performed on the TX Measure with SG (Analog) screen. (Para. (2))

Note :

When the RF Measure mode is set to the RF Only mode on the Setup TX Measure Parameter(Analog) screen, only both the RF Freq. and RF Power are measured for transmitter measurement.

AF values (Deviation, AF Level, AF Freq., and Distortion) are not measured. These not-measured items are indicated by - mark.

(1) Simplex transmitter(TX) measurement — TX Measure (Analog) screen

In the TX Measure (Analog) screen, simplex-transmitter (TX) analog signal is measured.

Procedure for transition to the TX Measure (Analog) screen:

Step	Key operation	Description
1.	[Main Func on off]F6	Sets the Main Func on to display the Main-Menu 1st page at the bottom of the screen.
2.	[Analog Tester]F3	Displays the Setup Common Parameter(Analog) screen.
3.	[TX Measure]F1	Displays the TX Measure(transmitter measurement) function-key 1st page on F7 to F12.
4.	[TX Measure]F7	Displays the TX Measure (Analog) screen.

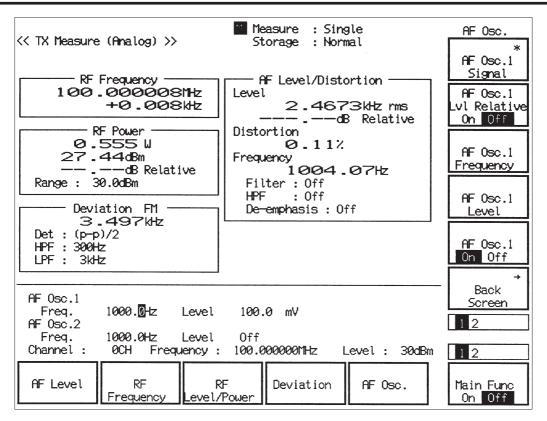


Fig. 4-10 TX Measure (Analog) screen

Note 1:

Relative values (RF Power and AF Level, which are always displayed) are displayed with —.- dB until the [Set Relative]F8 key is pressed.

Note 2:

Display value of RF Power Meter range [dBm] = TX Power Meter set value[dBm] + User Cal Factor[dB]

(User Cal Factor[dB] is set on the Setup TX Measure Parameter(Analog) screen.)

IF Level Meter is fixed to be used for AUX Input. Then, Power Meter is not used and the Range is not displayed.

• Main-function keys:	
1st page	
[AF Level]F1	Displays the AF Level function keys on F7 to F12.
	(Settings for demodulating RF signal from transmitter)
[RF Frequency]F2	Displays the RF Frequency function keys on F7 to F12.
	(Settings for changing the frequency of the RF signal from transmitter)
[RF Level/Power]F3	Displays the RF Level/Power function keys on F7 to F12.
	(Settings for measuring the level and power of the RF signal from transmitter)
[Deviation]F4	Displays the Deviation function keys on F7 to F12.
	(Settings for measuring the FM/øM of the RF signal from transmitter)
[AF Osc.]F5	Displays the AF Osc.function keys on F7 to F12.
	(Settings modulation signal to transmitter)
2nd page	
[PTT On Off]F4	Turns press-talk function on/off. When on, displays PTT On.
	When removed from TX Measure screen, PTT is set to off, automatically.
• AF Level function keys:	
1st page	
[Distortion Unit]F7	Selects the distortion measurement unit of dB or %.
	Initial value: %
[Set Relative]F8	Displays the relative value with the reference value that is the measured level when this
	key is pressed.
[Filter]F9	Selects the estimation filter of ITU-T P.53, C-MESSAGE, 6 kHz BPF, or Off.
	Initial value: Off
	Note :
	The HPF of 400 Hz is the filter for tone signal rejection.
[HPF]F10	Selects the HPF of 400 Hz or Off.
	Initial value: Off
[De-emphasis]F11	Selects the De-emphasis of 750 µs or Off.
	Initial value: Off
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
2nd page	
[Storage Mode]F9	Displays the Storage Mode menu for all the measured results on the screen.
[Normal]F7	Sets normal mode. (Initial value)
[Average]F8	Sets average mode.
[Average Count]F9	Sets number of Averaging processings.
	$2 \le \text{Set value} \le 9999$
	Initial value: 10
	(In the average mode, the measurement is of single mode, which displays the
	averaged results in each measurement, and stops measurement when the Average
	Count reached.)
	Note that the Power Meter has not the average mode.
[return]F12	Returns to the AF Level menu.
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

• RF Frequency function keys	3:
[Frequency]F7	Changes the RF frequency. (See para. 4.4 for the changing method.)
[Channel]F8	Changes the channel number. (See para. 4.4 for the changing method.)
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
 RF Level/Power function ke 1st page 	eys:
[Ref Level]F7	Changes the reference level. (See para. 4.4 for the changing method.)
[Set Relative]F8	Displays the relative value with the reference value of 0 dB that is the level when the key
	is pressed.
[Storage Mode]F9	Displays the Storage Mode menu for all the measured results on the screen.
[Normal]F7	Sets normal mode. (Initial value)
[Average]F8	Sets average mode.
[Average Count]F9	Sets number of Averaging processings.
	$2 \le \text{Set value} \le 9999$
	Initial value: 10
	(In the average mode, the measurement is of single mode, which displays the
	averaged results in each measurement, and stops measurement when the Average Count reached.)
	Note that the Power Meter has not the average mode.
[return]F12	Returns to the RF Level/Power menu.
[Calibration]F10	Displays the level calibration menu.
	Dispuys the level canonation ment. Disappears when the Power measure method is set to Power Meter on the Setup TX
	Measure Parameter (Analog) screen.
[Manual Calibration]	
	Calibrates the absolute value of the measured results of the IF Level Meter with the
	built-in Power Meter.
	During calibration, the window indicating calibration in progress is displayed on
	the screen.
	Disappears when AUX connector used.
[Calibration Cancel]	
[return]F12	Returns to the RF Level/Power menu.
[Adjust Range]F11	Sets the measurement level ranges (RF power meter range and reference level) to the
	status appropriate for measurement signals.
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

(Analog) screen.)	
	Up the Power-Meter measurement range.
[Power Meter Range Down]	
	Down the Power-Meter measurement range.
[Power Meter Zero Set]F11	Calibrates the Power-Meter zero point.
	(Sets the input level of the Main Input/Output connector to 0, and press this key
	calibrate zero point of the power meter, automatically.)
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
	Note :
	When the unit key $[dB\mu/V]$ pressed, it is assumed as "dBµ" for RF level
	ting, and as "V" for AF level setting.
Deviation function keys:	
1st page	
[Demod.]F7	Selects the demodulation function of FM (measurement unit: kHz) or øM (measurement
	unit: rad). Initial value: FM
[Relative On Off]F8	Displays the relative value with the reference value that is the measured level when
	key is pressed.
	Initial value: Off
[Det Mode]F9	Selects the detection mode of:
	1st page: (P-P)/2, +P, -P, RMS
	2nd page: (P-P)/2 Hold, +P Hold, -P Hold
	Initial value:(P-P)/2
[HPF]F10	Selects the HPF of 300 Hz, 50 Hz, or Off.
	Initial value: Off
[LPF]F11	Selects the LPF of 3 kHz, 15 kHz, or Off.
	Initial value: Off
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
2nd page	
[Storage Mode]F9	Displays the Storage Mode menu for all the measured results on the screen.
[Normal]F7	Sets normal mode. (Initial value)
[Average]F8	Sets average mode.
[Average Count]F9	Sets number of Averaging processings.
	$2 \le \text{Set value} \le 9999$
	Initial value: 10
	(In the average mode, the measurement is of single mode, which displays
	averaged results in each measurement, and stops measurement when the Aver
	Count reached.)
	Note that the Power Meter has not the average mode.
[return]F12	Returns to the Deviation menu.
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

• AF Osc. function keys:	
1st page —— Sets AF Osc	. 1, independently from AF Osc. 2.
[AF Osc.1 Signal]F7	Selects AF-Osc.1 signal type of Tone, Noise (ITU-T G.227), or Noise (White).
	When Noise is set, displays "Noise ({\$Noise type})" at the frequency display area.
	Initial value: Tone
[AF Osc.1 Lvl Relative On	Off]F8
	Displays the relative value with the reference value that is the value when this key is
	pressed.
	Initial value: Off
[AF Osc.1 Frequency]F9	Sets AF-Osc.1 frequency.
	20.0 Hz ≤ Set value ≤ 20 000.0 Hz, 0.1 Hz step
	Initial value: 1 000.0 Hz
	(When setting the same frequency as AF Osc.2, the AF Osc. output level becomes the sum
	of the set values.)
[AF Osc.1 Level]F10	Sets the AF-Osc. 1 level.
	Initial value: 100.0 mV
	When 600 Ω is set for Impedance of AF level output on the Setup Common Parameter
	screen:
	• For Tone of signal type
	0.400 V < Set value $\leq 3.000 \text{ V}$, 0.001 V step
	$40.0 \text{ mV} < \text{Set value} \le 400.0 \text{ mV}, 0.1 \text{ mV step}$
	$4.00 \text{ mV} < \text{Set value} \le 40.00 \text{ mV}, 0.01 \text{ mV step}$
	0.010 mV set value $\le 4.000 \text{ mV}$, 0.001 mV step
	• For Noise of signal type
	0.150 V < Set value $\leq 1.500 \text{ V}$, 0.001 V step
	$15.0 \text{ mV} < \text{Set value} \le 150.0 \text{ mV}, 0.1 \text{ mV step}$
	$1.50 \text{ mV} < \text{Set value} \le 15.00 \text{ mV}, 0.01 \text{ mV}$ step
	0.010 mV< Set value ≤ 1.500 mV, 0.001 mV step
	When 50 Ω is set for Impedance of AF level output on the Setup Common Parameter
	screen:
	• For Tone of signal type
	$40.0 \text{ mV} < \text{Set value} \le 400.0 \text{ mV}, 0.1 \text{ mV step}$
	$4.00 \text{ mV} < \text{Set value} \le 40.00 \text{ mV}, 0.01 \text{ mV step}$
	0.010 mV set value $\le 4.000 \text{ mV}$, 0.001 mV step
	• For Noise of signal type
	$15.0 \text{ mV} < \text{Set value} \le 150.0 \text{ mV}, 0.1 \text{ mV step}$
	$1.50 \text{ mV} < \text{Set value} \le 15.00 \text{ mV}, 0.01 \text{ mV}$ ste
	0.010 mV set value $\le 1.500 \text{ mV}$, 0.001 mV step
[AF Osc.1 On Off]F11	Turns on/off the AF-Osc. 1 output level.
	When off, displays off at the level display area.
	Initial value: On
	(When off, the [AF Osc.1 Level]F10 key is not displayed, so level cannot be set.)
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

2nd page — Sets AF Osc. 2, independently from AF Osc. 1.[AF Osc.2 Signal]F7Selects AF-Osc. 2 signal type of Tone, Noise (ITU-T G.227), or Noise (White).		
Initial value: Tone		
When Noise is set, displays "Noise ({\$Noise type})" at the frequency display area.		
[AF Osc.2 Lvl Relative On Off]F8		
Displays the relative value with the reference value that is the value when this key	ey is	
pressed.	•	
Initial value: Off		
[AF Osc.2 Frequency]F9 Sets AF-Osc. 2 frequency.		
$20.0 \text{ Hz} \le \text{Set value} \le 20\ 000.0 \text{ Hz}, 0.1 \text{ Hz step}$		
Initial value: 1 000.0 Hz		
(When setting the same frequency as AF Osc. 1, the AF Osc. output level becomes	the	
sum of the set values.)		
[AF Osc.2 Level]F10 Sets the AF-Osc. 2 level.		
Initial value: 100.0 mV		
When 600 Ω is set for Impedance of AF level output on the Setup Common Parame	leter	
screen:		
• For Tone of signal type		
0.400 V< Set value ≤ 3.000 V, 0.001 V step		
40.0 mV < Set value $\le 400.0 \text{ mV}$, 0.1 mV step		
4.00 mV< Set value ≤ 40.00 mV, 0.01 mV step		
0.010 mV< Set value ≤ 4.000 mV, 0.001 mV step		
• For Noise of signal type		
0.150 V< Set value ≤ 1.500 V, 0.001 V step		
15.0 mV < Set value $\leq 150.0 \text{ mV}$, 0.1 mV step		
1.50 mV< Set value ≤ 15.00 mV, 0.01 mV step		
0.010 mV< Set value ≤ 1.500 mV, 0.001 mV step		
When 50 Ω is set for Impedance of AF level output on the Setup Common Parame	leter	
screen:		
• For Tone of signal type		
40.0 mV < Set value $\leq 400.0 \text{ mV}$, 0.1 mV step		
4.00 mV< Set value ≤ 40.00 mV, 0.01 mV step		
0.010 mV< Set value ≤ 4.000 mV, 0.001 mV step		
 For Noise of signal type 		
15.0 mV< Set value ≤ 150.0 mV, 0.1 mV step		
1.50 mV< Set value ≤ 15.00 mV, 0.01 mV step		
0.010 mV< Set value ≤ 1.500 mV, 0.001 mV step		
[AF Osc.2 On Off]F11 Turns on/off the AF-Osc. 2 output level.		
When off, displays off at the level display area.		
Initial value: Off		
(When off, the [AF Osc.2 Level]F10 key is not displayed, so level cannot be set.)		
[Back Screen]F12 Returns to the Setup Common Parameter (Analog) screen.		

(2) Duplex transmitter (TX) measurement — TX Measure with SG (Analog) screen

In the TX Measure with SG (Analog) screen, duplex-transmitter (TX) analog signal is measured.

Procedure for transition to the TX Measure with SG (Analog) screen:

Step	Key operation	Description
1.	[Main Func on off]F6	Sets the Main Func on to display the Main-Menu 1st page at the bottom of the screen.
2.	[Analog Tester]F3	Displays the Setup Common Parameter (Analog) screen.
3.	[TX Measure]F1	Displays the TX Measure (transmitter measurement) function-key 1st page on F7 to F12.
4.		[TX Measure with SG]F10 Displays the TX Measure with SG (Analog) screen.

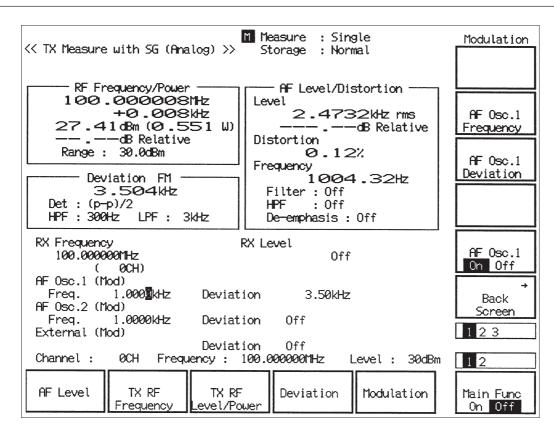


Fig. 4-11 TX Measure with SG (Analog) screen

Note 1:

Relative values (RF Power and AF Level, which are always displayed) are displayed with --.- dB untill the [Set Relative]F8 key is pressed.

Note 2:

Display value of RF Power Meter range [dBm] = TX Power Meter set value[dBm] + User Cal Factor[dB] (User Cal Factor [dB] is set on the Setup TX Measure Parameter(Analog) screen.)

IF Level Meter is fixed to be used for AUX Input. Then, Power Meter is not used and the Range is not displayed.

• Main-function keys:	
1st page	
[AF Level]F1	Displays the RX AF Level function keys on F7 to F12.
	(Settings for demodulating the RF signal from the transmitter, the same as the 2nd-page
	F1 key)
[TX RF Frequency]F2	Displays the TX RF Frequency function keys on F7 to F12.
	(Changes the RF signal frequency from the transmitter.
[TX RF Level/Power]F3	Displays the TX RF Level/Power function keys on F7 to F12.
	(Settings for measuring the RF-signal level/power from the transmitter)
[Deviation]F4	Displays the Deviation function keys on F7 to F12.
	(Settings for measuring the FM/øM modulation degree of the RF-signal from the transmitter)
[Modulation]F5	Displays the Modulation function keys on F7 to F12.
	(Settings of the modulation degree of the RF signal from the built-in signal generator of
	the MT8801C, the same as the 2nd-page F5 key)
2nd page	
2nd page [AF Level]F1	Displays the AF Level function keys on F7 to F12.
	Displays the AF Level function keys on F7 to F12. (Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1
	(Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1
[AF Level]F1	(Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1 key)
[AF Level]F1	(Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1 key) Displays the RX RF Frequency function keys on F7 to F12.
[AF Level]F1 [RX RF Frequency]F2	 (Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1 key) Displays the RX RF Frequency function keys on F7 to F12. (Changes the RF signal frequency from the built-in signal generator of the MT8801C.)
[AF Level]F1 [RX RF Frequency]F2	 (Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1 key) Displays the RX RF Frequency function keys on F7 to F12. (Changes the RF signal frequency from the built-in signal generator of the MT8801C.) Displays the RX RF Level function keys on F7 to F12.
[AF Level]F1 [RX RF Frequency]F2 [RX RF Level]F3	 (Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1 key) Displays the RX RF Frequency function keys on F7 to F12. (Changes the RF signal frequency from the built-in signal generator of the MT8801C.) Displays the RX RF Level function keys on F7 to F12. (Sets the RF signal level from the built-in signal generator of the MT8801C.)
[AF Level]F1 [RX RF Frequency]F2 [RX RF Level]F3	 (Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1 key) Displays the RX RF Frequency function keys on F7 to F12. (Changes the RF signal frequency from the built-in signal generator of the MT8801C.) Displays the RX RF Level function keys on F7 to F12. (Sets the RF signal level from the built-in signal generator of the MT8801C.) Turns on/off the RF signal level from the built-in signal generator of the MT8801C. The
[AF Level]F1 [RX RF Frequency]F2 [RX RF Level]F3	 (Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1 key) Displays the RX RF Frequency function keys on F7 to F12. (Changes the RF signal frequency from the built-in signal generator of the MT8801C.) Displays the RX RF Level function keys on F7 to F12. (Sets the RF signal level from the built-in signal generator of the MT8801C.) Turns on/off the RF signal level from the built-in signal generator of the MT8801C. The function keys F7 to F12 do not change.
[AF Level]F1 [RX RF Frequency]F2 [RX RF Level]F3 [RX RF Level On/Off]F4	 (Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1 key) Displays the RX RF Frequency function keys on F7 to F12. (Changes the RF signal frequency from the built-in signal generator of the MT8801C.) Displays the RX RF Level function keys on F7 to F12. (Sets the RF signal level from the built-in signal generator of the MT8801C.) Turns on/off the RF signal level from the built-in signal generator of the MT8801C. The function keys F7 to F12 do not change. Initial value: Off
[AF Level]F1 [RX RF Frequency]F2 [RX RF Level]F3 [RX RF Level On/Off]F4	 (Settings for demodulating the RF signal from the transmitter, the same as the 1st-page F1 key) Displays the RX RF Frequency function keys on F7 to F12. (Changes the RF signal frequency from the built-in signal generator of the MT8801C.) Displays the RX RF Level function keys on F7 to F12. (Sets the RF signal level from the built-in signal generator of the MT8801C.) Turns on/off the RF signal level from the built-in signal generator of the MT8801C. The function keys F7 to F12 do not change. Initial value: Off Displays the Modulation function keys on F7 to F12.

Function key:

Function keys for 1st page of the main function key- Settings used for TX measurement

• AF Level function keys:	
1st page	
[Distortion Unit]F7	Selects the distortion measurement unit of dB or %.
	Initial value: %
[Set Relative]F8	Displays the relative value with the reference value that is the measured level when this
	key is pressed.
[Filter]F9	Selects the estimation filter of ITU-T P.53, C-MESSAGE, 6 kHz BPF, or Off.
	Initial value: Off
[HPF]F10	Selects the HPF of 400 Hz or Off.
	Initial value: Off
	Note :
	The HPF of 400 Hz is the filter for tone signal rejection.
[De-emphasis]F11	Selects the De-emphasis of 750 μ s or Off.
	Initial value: Off
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
2nd page	
[Storage Mode]F9	Displays the Storage Mode menu for all the measured results on the screen.
[Normal]F7	Sets normal mode. (Initial value)
[Average]F8	Sets average mode.
[Average Count]F9	Sets number of Averaging processings.
	$2 \le \text{Set value} \le 9999$
	Initial value: 10
	(In the average mode, the measurement is of single mode, which displays the
	averaged results in each measurement, and stops measurement when the Average
	Count reached.)
	Note that the Power Meter has not the average mode.
[return]F12	Returns to the AF Level menu.
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

• TX RF Frequency function keys:

[Frequency]F7	Changes the RF frequency. (See para. 4.4 for the changing method.)
[Channel]F8	Changes the channel number. (See para. 4.4 for the changing method.)
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

TX RF Level/Power function keys:		
	1st page	
	[Ref Level]F7	Changes the reference level. (See para. 4.4 for the changing method.)
	[Set Relative]F8	Displays the relative value with the reference value that is the measured level when this
	[Storage MedelE0	key is pressed.
	[Storage Mode]F9	Displays the Storage Mode menu for all the measured results on the screen.
	[Normal]F7	Sets normal mode. (Initial value)
	[Average]F8	Sets average mode.
	[Average Count]F9	Sets number of Averaging processings.
		$2 \le \text{Set value} \le 9999$
		Initial value: 10
		(In the average mode, the measurement is of single mode, which displays the
		averaged results in each measurement, and stops measurement when the Average Count reached.)
		Note that the Power Meter has not the average mode.
	[return]F12	Returns to the TX RF Level/Power menu.
	[Calibration]F10	Displays the level calibration menu.
		Disappears when the Power measure method is set to Power Meter on the Setup TX
		Measure Parameter (Analog) screen.
	[Manual Calibration]	-
		Level Meter using the built-in Power Meter.
		During calibration, the window indicating calibration in progress is displayed on
		the screen.
		Disappears when AUX connector used.
	[Calibration Cancel]]	
	[return]F12	Returns to the TX RF Level/Power menu.
	[Adjust Range]F11	Sets the measurement level ranges (RF power meter range and reference level) to the
	[]8-]	status appropriate for measurement signals.
	[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
		the Power measure method is set to IF Level Meter on the Setup TX Measure Parameter
		(Analog) screen.)
	[Power Meter Range Up]F7	Up the Power-Meter measurement range.
	[Power Meter Range Down]]	78
		Down the Power-Meter measurement range.
	[Power Meter Zero Set]F11	Calibrates the Power-Meter zero point.
		(Set the input level of the Main Input/Output connector to 0, then press this key to perform
		zero-point calibration of the Power Meter, automatically.)
	[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

Note :

When the unit key [dB μ /V] pressed, it is assumed as "dB μ " for RF level setting, and as "V" for AF level setting.

 Deviation function keys: 	
1st page	
[Demod.]F7	Selects the demodulation function of FM (measurement unit: kHz) or ϕ M (measurement
	unit: rad).
	Initial value: FM
[Relative On Off]F8	Displays the relative value with the reference value that is the measured level when this
	key is pressed.
	Initial value: Off
[Det Mode]F9	Selects the detection mode of:
	1st page: (P-P)/2, +P, -P, RMS
	2nd page: (P-P)/2 Hold, +P Hold, -P Hold
	Initial value: (P-P)/2
[HPF]F10	Selects the HPF of 300 Hz, 50 Hz, or Off.
	Initial value: Off
[LPF]F11	Selects the LPF of 3 kHz, 15 kHz, or Off.
	Initial value: Off
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
2nd page	
[Storage Mode]F9	Displays the Storage Mode menu for all the measured results on the screen.
[Normal]F7	Sets normal mode. (Initial value)
[Average]F8	Sets average mode.
[Average Count]F9	Sets number of Averaging processings.
[riverage countif)	$2 \le \text{Set value} \le 9999$
	Initial value: 10
	(In the average mode, the measurement is of single mode, which displays the
	averaged results in each measurement, and stops measurement when the Average
	Count reached.)
	Note that the Power Meter has not the average mode.
[return]F12	Returns to the Deviation menu.
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

Modulation function keys:			
1st page —— Sets AF Osc. 1 only for modulating (Mod) the built-in signal generator (SG) of the MT8801C.			
[AF Osc.1 Frequency]F8	Sets AF-Osc.1 frequency (modulation frequency of the SG).		
	$20.0 \text{ Hz} \le \text{Set value} \le 20\ 000.0 \text{ Hz}, 0.1 \text{ Hz step}$		
	Initial value: 1 000.0 Hz		
	(When setting the same frequency as AF Osc.2 in Mod mode, the deviation becomes the		
	sum of the set values.)		
[AF Osc.1 Deviation]F9	Sets the FM deviation of the SG using the AF Osc. 1 signal.		
	$0.00 \text{ kHz} \le \text{Set value} \le 40.00 \text{ kHz}, 0.01 \text{ kHz step}$		
	Initial value: 3.50 kHz		
[AF Osc.1 On Off]F11	Turns on/off the AF-Osc. 1 output level so that turns on/off the SG modulation.		
	(When off, the [AF Osc. 1 Deviation]F9 key disappears, and Deviation cannot be set.)		
	Initial value: Off		
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.		

2nd page —— Sets AF Osc. 1 for modulating (Mod) the built-in signal generator (SG) of the MT8801C, or for AF signal output (AF) from the AF Output connector on the front panel.

[AF Osc.2 Signal]F7 — Displays the AF Osc.2 Signal menu.

[AF Signal]F7	Selects AF-Osc. 2 signal type of Tone, Noise (ITU-T G.227), or Noise (White).
	When Noise is set, displays "Noise ({\$Noise type})" at the frequency display area.
	Initial value: Tone
[Output for Mod AF]	F8 Selects the AF Osc.2 signal usage for Mod (SG modulation signal) or AF (AF
	signal output from AF Output connector).
	Initial value: Mod
[return]F12	Returns to the Modulation menu.
[AF Osc.2 Frequency]F8	In Mod mode, sets the modulation frequency of SG.
	(When setting the same frequency as AF Osc. 1 in the Mod mode, the deviation becomes
	the sum of the set values.)
	In AF mode, sets the frequency of the AF signal output from the AF Output connector.
	When the AF Osc. 2 Signal type is Noise, this item disappears.
	$20.0 \text{ Hz} \le \text{Set value} \le 20\ 000.0 \text{ Hz}, 0.1 \text{ Hz step}$
	Initial value: 1 000.0 Hz
[AF Osc.2 Deviation]F9	In Mod mode, sets the FM deviation of SG.
	In AF mode, this item disappears.
	0.00 kHz ≤ Set value≤ 40.00 kHz, 0.01 kHz step
	Initial value: 3.50 kHz

[AF Osc.2 Level]F10	In AF mode, sets the AF signal output level as shown below.
	Initial value: 100.0 mV
	When 600 Ω is set for Impedance of AF level output on the Setup Common Parameter screen:
	• For Tone of signal type
	$0.400 \text{ V} < \text{Set value} \le 3.000 \text{ V}, 0.001 \text{ V step}$
	$40.0 \text{ mV} < \text{Set value} \le 400.0 \text{ mV}, 0.1 \text{ mV step}$
	$4.00 \text{ mV} < \text{Set value} \le 40.00 \text{ mV}, 0.01 \text{ mV} \text{ step}$
	$0.010 \text{ mV} < \text{Set value} \le 4.000 \text{ mV}, 0.001 \text{ mV step}$
	• For Noise of signal type
	$0.150 \text{ V} < \text{Set value} \le 1.500 \text{ V}, 0.001 \text{ V step}$
	$15.0 \text{ mV} < \text{Set value} \le 150.0 \text{ mV}, 0.1 \text{ mV step}$
	$1.50 \text{ mV} < \text{Set value} \le 15.00 \text{ mV}, 0.01 \text{ mV}$ step
	$0.010 \text{ mV} < \text{Set value} \le 1.500 \text{ mV}, 0.001 \text{ mV step}$
	When 50 Ω is set for Impedance of AF level output on the Setup Common Parameter
	screen:
	• For Tone of signal type
	40.0 mV< Set value ≤ 400.0 mV, 0.1 mV step
	4.00 mV< Set value ≤ 40.00 mV, 0.01 mV step
	0.010 mV< Set value ≤ 4.000 mV, 0.001 mV step
	• For Noise of signal type
	15.0 mV< Set value ≤ 150.0 mV, 0.1 mV step
	1.50 mV< Set value ≤ 15.00 mV, 0.01 mV step
	0.010 mV< Set value ≤ 1.500 mV, 0.001 mV step
	In Mod mode, this item disappears.
[AF Osc.2 On Off]F11	In Mod mode, turns on/off the FM deviation of SG by AF Osc. 2.
	In AF mode, turns on/off the AF output.
	(When off, the [AF Osc. 2 Deviation]F9 key and [AF Osc. 2 Level]F10 key disappear, and
	deviation or level cannot be set.)
	Initial value: Off
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
	Note :
	When the unit key $[dB\mu/V]$ pressed, it is assumed as "dBµ" for RF level set-
	ting, and as "V" for AF level setting.
3rd page — External input si	ignal (from the Ext FM Input connector on rear panel) is used for FM modulation of SG.
[External Deviation]F9	Sets FM deviation of SG using the External FM Input signal.
	$0.00 \text{ kHz} \le \text{Set value} \le 40.00 \text{ kHz}, 0.01 \text{ kHz step}$
	Initial value: 3.50 kHz
[External On Off]F11	Turns on/off the External FM Input signal to turn on/off the FM deviation of SG.
	(When off, the [External Deviation]F9 key disappears, and deviation cannot be set.)
	Initial value: Off
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

Function key:

Function keys for 2nd page of the main function key

• AF Level function key - The same as the AF Level function keys at the 1st page of the main function key

RX RF Frequency function key:		
[Incremental Step Value]F7	Sets the step value to up/down the RF frequency of the built-in signal generator (SG) of	
	the MT8801C with [Step] keys.	
	$1 \text{ Hz} \le \text{Set value} \le 3 \text{ GHz}, 1 \text{ Hz step}$	
	Initial value: 1 MHz	
[Relative On Off]F8	Displays the relative value with the reference value that is the set value when this key is	
	pressed.	
	Initial value: Off	
	When the frequency is set with numeric keys in Relative On mode, it becomes the actual output frequency (not relative value).	
	Relative displayed value = Set value by numeric keys - value when this key is pressed	
[Channel]F9	Changes the channel number. (See para. 4.4 for changing method.)	
[Back Screen]F12	Returns to the Setup Common Parameter(Analog) screen.	
• RX RF Level function key:		
[Incremental Step Value]F7	Sets the step value to up/down the RF level of signal generator with [Step] keys.	
	Range: $0.1 \text{ dB} \le \text{Set value} \le 80.0 \text{ dB}, 0.1 \text{ dB step}$	
	Initial value: 1.0 dB	
[Relative On Off]F8	Displays the relative value with the reference value of 0 dB that is the level when this key is pressed.	
	Initial value: Off	
	When the level is set with numeric keys in Relative On mode, it becomes the actual output	
	level (not relative value).	
	Relative displayed value = Set value by numeric keys - value when this key is pressed	
[Unit EMF TERM]F10	Selects the RF level unit of the open voltage (EMF, dBµ), terminated voltage (TERM,	
	dBµ).	
	Level can be set at dBµ display. 30 dBµ EMF = 24 dBµ TERM	
	Initial value: EMF	
[Back Screen]F12	Returns to Setup Common Parameter(Analog) screen.	
	Note :	
	When the unit key $[dBu/V]$ pressed, it is assumed as "dBu" for BE level set-	

When the unit key $[dB\mu/V]$ pressed, it is assumed as "dBµ" for RF level setting, and as "V" for AF level setting.

• Modulation function key- The same as the Modulation function keys at the 1st page of the main function key

4.6 Receiver (RX) Measurement —RX Measure (Analog) screen

In the RX Measure (Analog) screen, a receiver (RX) analog signal is measured. Procedure for transition to the RX Measure (Analog) screen:

Step	Key operation	Description
1.	[Main Func on off]F6	Sets the Main Func on to display the Main-Menu 1st page at the bottom of the screen.
2.	[Analog Tester]F3	Displays the Setup Common Parameter (Analog) screen.
3.	[RX Measure]F2	Displays the RX Measure (receiver measurement) function key on F7 to F12.
4.	[RX Measure]F7	Displays the RX Measure (Analog) screen.

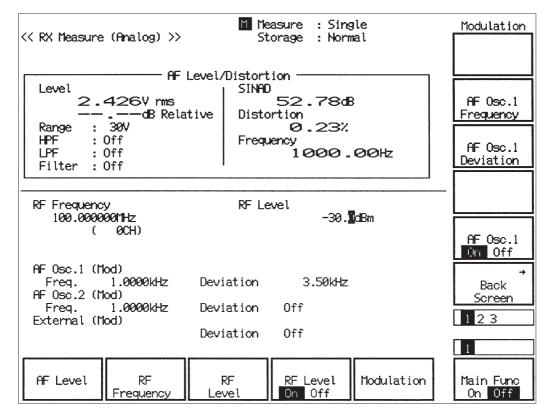


Fig. 4-12 RX Measure (Analog) screen

Note 1:

Relative value (of AF Level, which is always displayed) is displayed with --.dB until the [Set Relative]F8 key is pressed.

 Main-function keys: 	
[AF Level]F1	Displays the AF Level function keys on F7 to F12.
	(Settings for measuring AF signal from receiver)
[RX Frequency]F2	Displays the RF Frequency function keys on F7 to F12.
	(Setting RF signal frequency to receiver)
[RF Level]F3	Displays the RF Level function keys on F7 to F12.
	(Setting RF signal level to receiver)
[RF Level On Off]F4	Turns on/off the RF output level.
	The function keys F7 to F12 do not change.
	Initial value: Off
[Modulation]F5	Displays the Modulation function keys on F7 to F12.
	(Setting RF signal modulation degree to receiver)
• AF Level function keys:	
1st page	
[Adjust Range]F7	Sets the AF-measurement level range to the status appropriate for AF-measurement signals.
[Set Relative]F8	Displays the relative value with the reference value of 0 dB that is the level when this key
	is pressed.
[HPF]F9	Selects the HPF of 400 Hz, 300 Hz, 50 Hz, or Off.
	Initial value: Off
	Note :
	The HPF of 400 Hz is the filter for tone signal rejection.
[LPF]F10	Selects the LPF of 3 kHz, 15 kHz, or Off.
	Initial value: Off
[Filter]F11	Selects the estimation filter of ITU-T P.53, C-MESSAGE, 6 kHz BPF, or Off.
	Initial value: Off
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
2nd page	
[Range Up]F7	Up the measurement range of the AF level meter.
[Range Down]F8	Down the measurement range of the AF level meter.
[Storage Mode]F9	Displays the Storage Mode menu for all the measured results on the screen.
[Normal]F7	Sets normal mode. (Initial value)
[Average]F8	Sets average mode.
[Average Count]F9	Sets number of Averaging processings.
	$2 \le \text{Set value} \le 9999$
	Initial value: 10
	(In the average mode, the measurement is of single mode, which displays the
	averaged results in each measurement, and stops measurement when the Average
	Count reached.)
	Note that the Power Meter has not the average mode.
[return]F12	Returns to the AF Level menu.

	[AF Level Unit]F10	Selects the unit of the AF Level measurement value of dBm (valid for 600 Ω of input impedance) or V.
		Initial value: V
		When the 100 k Ω of Impedance of AF Level Input is set on the Setup Common Parameter
	Distantian Unit/IE11	(Analog) screen, this menu is not displayed.
	[Distortion Unit]F11	Selects the unit of the distortion measurement value of dB or %. Initial value: %
	[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
•	RF Frequency function keys	:
	[Incremental Step Value]F7	Sets the step value for up/down the RF frequency by the [Step] keys.
		1 Hz ≤ Set value≤ 3 GHz, 1 Hz step
		Initial value: 1 MHz
	[Relative On Off]F8	Displays the relative value with the reference value that is the set value when this key is pressed.
		Initial value: Off
		When the frequency is set with numeric keys in Relative On mode, it becomes the actual output frequency (not relative value).
		Relative displayed value = Set value by numeric keys - value when this key is pressed
	[Channel]F9	Changes the channel number. (See para. 4.4 for the changing method.)
	[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
•		
•	[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
•	[Back Screen]F12 RF Level function keys:	Returns to the Setup Common Parameter (Analog) screen. Sets the step value for up/down the RF level by the [Step] keys. Range: $0.1 \text{ dB} \leq \text{Set value} \leq 80.0 \text{ dB}, 0.1 \text{ dB step}$
•	[Back Screen]F12 RF Level function keys:	Returns to the Setup Common Parameter (Analog) screen. Sets the step value for up/down the RF level by the [Step] keys. Range: $0.1 \text{ dB} \leq \text{Set value} \leq 80.0 \text{ dB}, 0.1 \text{ dB}$ step Initial value: 1.0 dB Displays the relative value with the reference value that is the set value when this key is pressed.
•	[Back Screen]F12 RF Level function keys: [Incremental Step Value]F7	Returns to the Setup Common Parameter (Analog) screen. Sets the step value for up/down the RF level by the [Step] keys. Range: $0.1 \text{ dB} \leq \text{Set value} \leq 80.0 \text{ dB}, 0.1 \text{ dB step}$ Initial value: 1.0 dB Displays the relative value with the reference value that is the set value when this key is pressed. Initial value: Off
•	[Back Screen]F12 RF Level function keys: [Incremental Step Value]F7	Returns to the Setup Common Parameter (Analog) screen. Sets the step value for up/down the RF level by the [Step] keys. Range: $0.1 \text{ dB} \leq \text{Set value} \leq 80.0 \text{ dB}, 0.1 \text{ dB}$ step Initial value: 1.0 dB Displays the relative value with the reference value that is the set value when this key is pressed.
•	[Back Screen]F12 RF Level function keys: [Incremental Step Value]F7	Returns to the Setup Common Parameter (Analog) screen. Sets the step value for up/down the RF level by the [Step] keys. Range: $0.1 dB \le Set value \le 80.0 dB$, $0.1 dB$ step Initial value: $1.0 dB$ Displays the relative value with the reference value that is the set value when this key is pressed. Initial value: Off When the level is set with numeric keys in Relative On mode, it becomes the actual output
•	[Back Screen]F12 RF Level function keys: [Incremental Step Value]F7	Returns to the Setup Common Parameter (Analog) screen. Sets the step value for up/down the RF level by the [Step] keys. Range: 0.1 dB \leq Set value \leq 80.0 dB, 0.1 dB step Initial value: 1.0 dB Displays the relative value with the reference value that is the set value when this key is pressed. Initial value: Off When the level is set with numeric keys in Relative On mode, it becomes the actual output level (not relative value). Relative displayed value = Set value by numeric keys - value when this key is pressed Selects the RF level unit of open voltage (EMF, dBµ) or termination voltage (TERM,
•	[Back Screen]F12 RF Level function keys: [Incremental Step Value]F7 [Relative On Off]F8	Returns to the Setup Common Parameter (Analog) screen. Sets the step value for up/down the RF level by the [Step] keys. Range: 0.1 dB \leq Set value \leq 80.0 dB, 0.1 dB step Initial value: 1.0 dB Displays the relative value with the reference value that is the set value when this key is pressed. Initial value: Off When the level is set with numeric keys in Relative On mode, it becomes the actual output level (not relative value). Relative displayed value = Set value by numeric keys - value when this key is pressed Selects the RF level unit of open voltage (EMF, dB μ) or termination voltage (TERM, dB μ). Selectable only when in dB μ display mode. 30 dB μ EMF = 24 dB μ TERM
•	[Back Screen]F12 RF Level function keys: [Incremental Step Value]F7 [Relative On Off]F8	Returns to the Setup Common Parameter (Analog) screen. Sets the step value for up/down the RF level by the [Step] keys. Range: 0.1 dB \leq Set value \leq 80.0 dB, 0.1 dB step Initial value: 1.0 dB Displays the relative value with the reference value that is the set value when this key is pressed. Initial value: Off When the level is set with numeric keys in Relative On mode, it becomes the actual output level (not relative value). Relative displayed value = Set value by numeric keys - value when this key is pressed Selects the RF level unit of open voltage (EMF, dBµ) or termination voltage (TERM, dBµ).

• Modulation function keys:		
1st page — AF Osc.1 is used only for the modulation (Mod mode) of the built-in signal generator (SG) in the		
MT8801C.		
[AF Osc.1 Frequency]F8	Sets AF Osc.1 frequency to set modulation frequency of the SG.	
	20.0 Hz ≤ Set value≤ 20 000.0 Hz, 0.1 Hz step	
	Initial value: 1 000.0 Hz	
	(When setting the same frequency as AF Osc.2 in Mod mode, the deviation of the RF	
	output becomes the sum of each the set value.)	
[AF Osc.1 Deviation]F9	Sets the FM deviation of the SG using AF Osc.1 output.	
	0.00 kHz ≤ Set value≤ 40.00 kHz, 0.01 kHz step	
	Initial value: 3.50 kHz	
[AF Osc.1 On Off]F11	Turns on/off the AF Osc.1 output level to turn on/off the FM deviation of the SG by the	
	AF Osc.1 output.	
	(When off, the [AF Osc.1 Deviation]F9 key disappears, and deviation cannot be set.)	
	Initial value: On	
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.	
2nd page — AF Osc.2 is us	ed for the modulation (Mod mode) of the built-in signal generator (SG) in the MT8801C, or	
	AF output signal (AF mode) from the AF Output connector on the front panel.	
[AF Osc.2 Signal]F7	Displays the AF Osc.2 Signal menu.	
[AF Signal]F7	Selects AF-Osc.2 signal type of Tone, Noise (ITU-T G.227), or Noise (White).	
	When Noise is set, displays "Noise ({\$Noise type})" at the frequency display area.	
	Initial value: Tone	
[Output for Mod AF	F]F8 Selects the AF Osc.2 signal usage for Mod (SG modulation signal) or AF (AF	
	signal output from AF Output connector).	
	Initial value: Mod	
[return]F12	Returns to the Modulation menu.	
[AF Osc.2 Frequency]F8	In Mod mode, sets the modulation frequency of the signal generator.	
	(When setting the same frequency as AF Osc. 1 in the Mod mode, the deviation becomes	
	the sum of the set values.)	
	In AF mode, sets the frequency of the AF signal output from the AF Output connector.	
	When the AF Osc. 2 Signal type is Noise, this item disappears.	
	$20.0 \text{ Hz} \le \text{Set value} \le 20\ 000.0 \text{ Hz}, 0.1 \text{ Hz step}$	
	Initial value: 1 000.0 Hz	
[AF Osc.2 Deviation]F9	In Mod mode, sets the FM deviation of the SG.	
	In AF mode, this item disappears.	
	$0.00 \text{ kHz} \leq \text{FM Set value} \leq 40.00 \text{ kHz}, 0.01 \text{ kHz step}$	
	Initial value: 3.50 kHz	

[AF Osc.2 Level]F10	In AF mode, sets the AF signal output level as shown below. Initial value: 100.0 mV
	When 600 Ω is set for Impedance of AF level output on the Setup Common Parameter
	scr]een:
	• For Tone of signal type
	$0.400 \text{ V} < \text{Set value} \le 3.000 \text{ V}, 0.001 \text{ V step}$
	40.0 mV < Set value $\leq 400.0 \text{ mV}$, 0.1 mV step
	4.00 mV set value $\leq 40.00 \text{ mV}$, 0.01 mV step
	0.010 mV set value $\leq 4.000 \text{ mV}$, 0.001 mV step
	• For Noise of signal type
	0.150 V < Set value $\le 1.500 \text{ V}$, 0.001 V step
	15.0 mV set value $\leq 150.0 \text{ mV}$, 0.1 mV step
	1.50 mV set value $\leq 15.00 \text{ mV}$, 0.01 mV step
	0.010 mV set value $\leq 1.500 \text{ mV}$, 0.001 mV step
	When 50 Ω is set for Impedance of AF level output on the Setup Common Parameter
	screen:
	• For Tone of signal type
	40.0 mV set value $\leq 300.0 \text{ mV}$, 0.1 mV step
	$4.00 \text{ mV} < \text{Set value} \le 40.00 \text{ mV}, 0.01 \text{ mV step}$
	0.010 mV< Set value ≤ 4.000 mV, 0.001 mV step
	• For Noise of signal type
	15.0 mV set value $\leq 150.0 \text{ mV}$, 0.1 mV step
	1.50 mV< Set value ≤ 15.00 mV, 0.01 mV step
	0.010 mV< Set value ≤ 1.500 mV, 0.001 mV step
	In Mod mode, this item disappears.
[AF Osc.2 On Off]F11	In Mod mode, turns on/off the FM deviation of SG by AF Osc. 2.
	In AF mode, turns on/off the AF output.
	(When off, the [AF Osc.2 Deviation]F9 key disappears, and deviation cannot be set.)
	Initial value: Off
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
	Note :
	When the unit key $[dB\mu/V]$ pressed, it is assumed as "dBµ" for RF level set-
	ting, and as "V" for AF level setting.
3rd page — External input	signal (from the Ext FM Input connector on the rear panel) is used for FM modulation of the
built-in signal generator (S	

Sets FM deviation of signal generator using the External FM Input signal.
$0.00 \text{ kHz} \le \text{FM}$ Set value $\le 40.00 \text{ kHz}$, 0.01 kHz step
Initial value: 3.50 kHz
Turns on/off the External FM Input signal to turn on/off the FM deviation of signal
generator.
(When off, the [External Deviation]F9 key disappears, and deviation cannot be set.)
Initial value: Off
Returns to the Setup Common Parameter (Analog) screen.

4.7 AF Signal Measurement —AF Measure (Analog) screen

In the AF Measure (Analog) screen, the MT8801C outputs an AF signal from the AF Output connector to the device under test (DUT). The MT8801C also receives the AF signal from the DUT at the AF Input connector to measure the level,

frequency, and distortion.

Procedure for transition to the AF Measure (Analog) screen:

Step Key operation	Description
1. [Main Func on off]F6	Set Main Func on.
	The Main-Menu 1st page appears at the bottom of the screen.
2. [Analog Tester]F3	Displays the Setup Common Parameter (Analog) screen.
3. [AF Measure]F3	Displays the AF Measure function keys at F7 to F12.
4.	[AF Measure]F7 Displays the AF Measure (Analog) screen.

<< AF Measure (Analog) >>	Measure : Single Storage : Normal	AF Osc.
AF Leve	L/Distortion	AF Osc.1 Signal
Level 2.123V rms 	Distortion	AF Osc.1 Lvl Relative On Off
Range : 30V HPF : Off LPF : Off Filter : Off	0.10% Frequency 401.33Hz	AF 0sc.1 Frequency
		AF Osc.1 Level
		AF Osc.1 Un Off
AF Osc.1 Freq. 1000. D Hz Leve AF Osc.2		→ Back Screen
Freq. 1000.0Hz Leve	l Off	12
AF Level	AF Osc.	1 Main Func On Off

Fig. 4-13 AF Measure (Analog) screen

Main-function keys:	Displays the AEI and function have an $E7 = E12$
[AF Level]F1	Displays the AF Level function keys on F7 to F12.
	(The same as the AF Level menu of the RX Measure screen.)
[AF Osc.]F5	Displays the AF Osc. function keys on F7 to F12.
	(The same as the AF Osc. menu of the TX Measure screen.)
AF Level function keys:	
1st page	
[Adjust Range]F7	Sets the measurement AF level ranges to the status appropriate for the measuremer signals.
[Set Relative]F8	Displays the relative value with the reference value that is the set value when this key
	pressed.
[HPF]F9	Selects the HPF of 400 Hz, 300 Hz, 50 Hz, or Off.
[111 1]]19	Initial value: Off
	Note :
	The HPF of 400 Hz is the filter for tone signal rejection.
[LPF]F10	Selects the LPF of 3 kHz, 15 kHz, or Off.
	Initial value: Off
[Filter]F11	Selects the estimation filter of ITU-T P.53, C-MESSAGE, 6 kHz BPF, or Of
	Initial value: Off
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
	Returns to the Setup Common Futurneter (Finalog) sereen.
2nd page	
[Range Up]F7	Up the measurement range of the AF level meter.
[Range Down]F8	Down the measurement range of the AF level meter.
[Storage Mode]F9	Displays the Storage Mode menu for all the measured results on the screen.
[Normal]F7	Sets normal mode. (Initial value)
[Average]F8	Sets average mode.
[Average Count]F9	Sets number of Averaging processings.
	$2 \le \text{Set value} \le 9999$
	Initial value: 10
	(In the average mode, the measurement is of single mode, which displays the
	averaged results in each measurement, and stops measurement when the Average
	Count reached.)
	Note that the Power Meter has not the average mode.
[return]F12	Returns to the AF Level menu.
[AF Level Unit]F10	Selects the unit of the AF Level measurement value of dBm (valid for 600 Ω of input
	impedance) or V.
	Initial value: V
	When the 100 k Ω of Impedance of AF Level Input is set on the Setup Common Parameter
	(Analog) screen, this menu is not displayed.
[Distortion Unit]F11	Selects the unit of the distortion measurement value of dB or %.
	Initial value: %
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

• AF Osc. function key:	
1st page —— Sets AF Osc	. 1, independently from AF Osc. 2.
[AF Osc.1 Signal]F7	Selects AF-Osc.1 signal type of Tone, Noise (ITU-T G.227), or Noise (White).
	When Noise is set, displays "Noise ({\$Noise type})" at the frequency display area.
	Initial value: Tone
[AF Osc.1 Lvl Relative On	Off]F8
	Displays the relative value with the reference value that is the set value when this key is
	pressed.
	Initial value: Off
[AF Osc.1 Frequency]F9	Sets AF Osc.1 frequency.
	Range: 20.0 Hz \leq Set value \leq 20 000.0 Hz, 0.1 Hz step
	Initial value: 1 000.0 Hz
	(When setting the same frequency as AF Osc.2, the AF Osc. output level becomes the sum
	of the set values.)
[AF Osc.1 Level]F10	Sets AF Osc.1 output level.
	Initial value: 100.0 mV
	When 600 Ω is set for Impedance of AF level output on the Setup Common Parameter
	screen:
	• For Tone of signal type
	0.400 V< Set value ≤ 3.000 V, 0.001 V Step
	40.0 mV set value $\leq 400.0 \text{ mV}$, 0.1 mV Step
	4.00 mV set value $\leq 40.00 \text{ mV}$, 0.01 mV Step
	0.010 mV set value $\leq 4.000 \text{ mV}$, 0.001 mV Step
	• For Noise of signal type
	0.150 V < Set value $\leq 1.500 \text{ V}$, 0.001 V Step
	15.0 mV set value $\leq 150.0 \text{ mV}$, 0.1 mV Step
	1.50 mV set value $\leq 15.00 \text{ mV}$, 0.01 mV Step
	$0.010 \text{ mV} \le \text{Set value} \le 1.500 \text{ mV}, 0.001 \text{ mV Step}$
	When 50 Ω is set for Impedance of AF level output on the Setup Common Parameter
	screen:
	• For Tone of signal type
	$40.0 \text{ mV} < \text{Set value} \le 300.0 \text{ mV}, 0.1 \text{ mV Step}$
	$4.00 \text{ mV} < \text{Set value} \le 40.00 \text{ mV}, 0.01 \text{ mV Step}$
	$0.010 \text{ mV} < \text{Set value} \le 4.000 \text{ mV}, 0.001 \text{ mV Step}$
	• For Noise of signal type
	$15.0 \text{ mV} < \text{Set value} \le 150.0 \text{ mV}, 0.1 \text{ mV Step}$
	$1.50 \text{ mV} < \text{Set value} \le 15.00 \text{ mV}, 0.01 \text{ mV Step}$
	$0.010 \text{ mV} < \text{Set value} \le 1.500 \text{ mV}, 0.001 \text{ mV Step}$
[AF Osc.1 On Off]F11	Turns on/off the AF-Osc. 1 output level.
	When off, displays "Off" at the level display area.
	(When off, the [AF Osc.1 Level]F10 key disappears, and level cannot be set.) Initial value: On
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.
LDACK SCICCIIJI 12	Returns to the Setup Common Falancer (Allalog) setten.

2nd page —— Sets AF Osc.	2, independently from AF Osc. 1.
[AF Osc.2 Signal]F7	Selects AF-Osc. 2 signal type of Tone, Noise (ITU-T G.227), or Noise (White).
	When Noise is set, displays "Noise ({\$Noise type})" at the frequency display area.
	Initial value: Tone
[AF Osc.2 Lvl Relative On O	Off]F8
	Displays the relative value with the reference value that is the set value when this key is
	pressed.
	Initial value: Off
[AF Osc.2 Frequency]F9	Sets AF Osc.2 frequency.
	Range: 20.0 Hz ≤ Set value ≤ 20 000.0 Hz, 0.1 Hz step
	Initial value: 1 000.0 Hz
	(When setting the same frequency as AF Osc.1, the AF Osc. output level becomes the sum
	of the set values.)
[AF Osc.2 Level]F10	Sets AF Osc.2 output level.
	Initial value: 100.0 mV
	When 600 Ω is set for Impedance of AF level output on the Setup Common Parameter
	screen:
	• For Tone of signal type
	0.400 V< Set value ≤ 3.000 V, 0.001 V Step
	40.0 mV set value $\leq 400.0 \text{ mV}$, 0.1 mV Step
	4.00 mV set value $\leq 40.00 \text{ mV}$, 0.01 mV Step
	0.010 mV Set value $\le 4.000 \text{ mV}$, 0.001 mV Step
	• For Noise of signal type
	0.150 V < Set value $\leq 1.500 \text{ V}$, 0.001 V Step
	15.0 mV set value $\leq 150.0 \text{ mV}$, 0.1 mV Step
	1.50 mV set value $\leq 15.00 \text{ mV}$, 0.01 mV Step
	0.010 mV Set value $\leq 1.500 \text{ mV}$, 0.001 mV Step
	When 50 Ω is set for Impedance of AF level output on the Setup Common Parameter
	screen:
	• For Tone of signal type
	40.0 mV set value $\leq 300.0 \text{ mV}$, 0.1 mV Step
	4.00 mV set value $\leq 40.00 \text{ mV}$, 0.01 mV Step
	0.010 mV Set value $\leq 4.000 \text{ mV}$, 0.001 mV Step
	• For Tone of signal type
	15.0 mV set value $\leq 150.0 \text{ mV}$, 0.1 mV Step
	1.50 mV set value $\leq 15.00 \text{ mV}$, 0.01 mV Step
	0.010 mV set value $\leq 1.500 \text{ mV}$, 0.001 mV Step
[AF Osc.2 On Off]F11	Turns on/off the AF-Osc. 2 output level.
	When off, displays "off" at the level display area.
	(When off, the [AF Osc.2 Level]F10 key disappears, and level cannot be set.)
[Back Screen]F12	Returns to the Setup Common Parameter (Analog) screen.

4.8 Saving and recalling parameter data: Save Parameter screen, Recall Parameter screen

Display the Save Parameter and Recall Parameter screens according to the following steps to save or recall parameters set for the Analog Measurement.

Step	key operation	Description
1.	[Main Func on off]F6	Sets the Main Func on.
		The first page of the Main Menu appears at the bottom of the screen.
2.	[Recall]F4	Sets Recall Parameter mode.
		The Recall Parameter screen appears.
		The Recall function key menu appears on F7 to F12.
2'	[Save]F5	Sets Save Parameter mode.
		The Save Parameter screen appears. The Save function key menu appears on
		F7 to F12.

Re	call Parame	eter >>			Reca
No.		Date	Time	Recall file	Previ Pag
90 01	ANALOG00	99-10-13	23:46:26	Directory : Analog Tester Recall Item : Parameter	
02 03	ANALOGØ2	99-10-13	23:49:50	Recatt Item ; rarameter	Display /Next
04 05 06					File
87				FD Information	
28 29				Volume Label : ********** Unused Area : 1439232bytes	
10				Total Area : 1474560bytes	
11					
12 13					
14					
15 16					
17					
18 19					12
					1
					Main F On C

Fig. 4-14 Recall Parameter Screen

Section 4 Operation

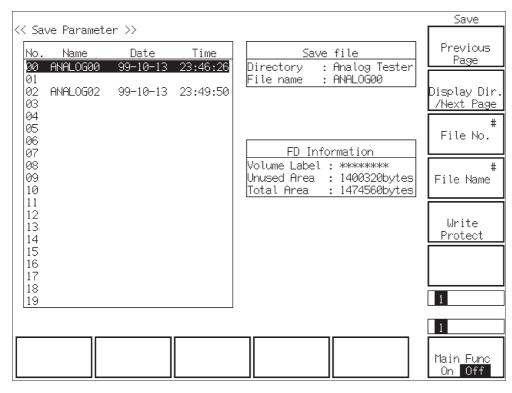


Fig. 4-15 Save Parameter Screen

• Floppy disk to be used:

For saving and loading parameters and data, use the floppy disk described in Section 3. When the floppy disk is required to be formatted, use the File Operation screen in Paragraph 4.9.

- Notes when displaying the Save Parameter screen and Recall Parameter screen: Before pressing the [Save]F5 or [Recall]F4 function key, insert a floppy disk (FD) in the FD driver of the MT8801C. Then press the key. The MT8801C automatically starts the FD-driver operation.
- Screen display and function key display:

Pressing the [Save]F5 or [Recall]F4 function key changes only the display of the F7 to F12 function keys. The screens (Figs. 4-14, 4-15) appear when the [Display Dir./Next Page] F8 key is pressed to display the contents of the FD. These screens also display the function keys used to select any directory and any file.

• Information to be saved and recalled:

The [Save] and [Recall] keys on the main function keys saves and recalls all the measurement parameters.

4.8 Saving and recalling parameter data: Save Parameter screen, Recall Parameter screen

Function keys on the Recall Parameter screen				
Main function key: None				
Recall function keys:				
[Display Dir.]F8:	Accesses the floppy disk and displays the directory of the parameter data file.			
	The lower-order Recall menu appears.			
** 1st page**				
[Previous Page]F7:	Displays the previous page of the directory.			
[Display Dir./Next Pa	ge]F8: Accesses the floppy disk and displays the next page of the directory.			
[File No.]F9:	Opens the window for entering the recall position (number) of the setup parameter			
	data file.			
	0 to 99, Resolution: 1, Initial value: 0			
** 2nd page **				
[Select Display Mode]F7:	Displays the Display Mode menu to select a display mode.			
[Wide]F7:	Displays file numbers in ascending order from 0 regardless of whether all files are saved.			
[Narrow]F8:	Skips the numbers of files not saved and displays only the numbers of saved files in ascending order.			
[return]F12:	Returns to the previous menu.			
[File No.]F9:	Opens the window for entering the recall position (number) of the setup parameter file.			
	0 to 99, Resolution: 1, Initial value: 0			
[return]F12:	Returns to the previous menu.			

Section 4 Operation

•	Function keys on the Save P	arameter screen
	Main function key: None	
	Save function keys:	
	[Display Dir.]F8:	Accesses the floppy disk and displays the directory of the parameter data file. The low-
		order Save menu appears.
	[Previous Page]F7:	Displays the previous page of the directory.
	[Display Dir./Next Pa	ge]F8: Accesses the floppy disk and displays the next page of the directory.
	[File No.]F9:	Opens the window for entering the save position (number) of the setup parameter
		data file.
		0 to 99, Resolution: 1, Initial value: 0
	[File Name]F10:	Opens the window for entering the name of the parameter data file to be saved.
		The data file name consists of up to eight characters.
	[Write Protect]F11:	Write-protects the specified parameter data file.
		An asterisk (*) is displayed at the end of the name of the write-protected file.
		If the specified parameter data file is already write-protected, this key cancels write
		protect.
		Note:
		This function can only be executed through panel operation.
	[File No.]F9:	Opens the window for entering the save position (number) of the setup
		parameter data file.
		0 to 99, Resolution: 1, Initial value: 0
	[return]F12:	Returns to the previous menu.

4.8 Saving and recalling parameter data: Save Parameter screen, Recall Parameter screen

• Saving parameters and data

This paragraph describes how to save the measurement parameters of the Analog Measurement to a floppy disk.

Step	key operation	Description
1.		Insert a saving floppy disk (FD) into the FD driver on the bottom left of the MT8801C.
2.	[Main Func on off]F6	Sets Main Func to on. The Main Menu 1st page is displayed on the screen bottom.
3.	[Save] F5	Changes to Save Parameter mode.
		Displays the Save function keys in F7 to F12, and then moves to the Save screen for parameter and data.
		Searches the FD for parameter and data files, and displays them on the screen.
4.	[Display Dir./Next Page]F8	Displays existing files to check the number of the file to be saved.
5.	[File Name]F10	Sets the file name used for save within 8 alphanumeric characters if necessary.
6.		Check the number of the file to be saved and the file status (whether the file exists and whether the file is write-enabled).
		To write-enable the file, proceed to Steps 7a and later. Otherwise, proceed to Step 8.
7a.	Cursor [\frown] and [\smile]	Select the file to be write-enabled.
7b.	[Write Protect] F11	Write-enables the file for over-writing.
8.	[File No.] F9	Specify the number of the file to be saved.
9.	[Set]	Saves the file.
10.	SAVE? Yes No	Opens SAVE confirmation window. Select YES.

• Write-protecting or write-enabling the file to be saved

This paragraph describes how to write-protect or write-enable the file containing data in the Save screen.

Step	key operation	Description
1.		Execute the Steps 1 to 3 of the saving procedure in the previous paragraph to display the Save menu.
2.		[Display Dir./Next Page]F8 Displays the existing files. Check the number of the file to be saved.
3.		Cursor $[\frown], [\frown]$ Select the file to be write-enabled.
4.		[Write Protect]F11 Write-protects or write-enables the file to be saved.

Section 4 Operation

• Recalling parameters and data

This paragraph describes how to recall Analog measurement parameters from the floppy disk.

Step	key operation	Description
1.		Insert a recall floppy disk (FD) into the FD driver at the bottom left of the MT8801C.
2.	[Main Func on off]F6	Sets Main Func to on. Displays Main Menu 1st page on the screen bottom.
3.	[Recall]F5	Changes to Recall Parameter mode. Displays the Recall function keys in F7 to F12, and moves to the Recall screen for parameter and data.
4.	[Display Dir./Next Page]F8	Searches the FD for parameter and data files, and displays them on the screen. Displays the directory containing the file to be recalled. Check the file to be recalled.
5.	Cursor[~][~]	Select the file to be recalled.
6.	[File No.]F9	Sets the number of any file to be recalled.
7.	[Set]	(The file to be recalled can be specified by the file number, too.) Confirms the file to be recalled.
8.	RECALL? Yes No	Opens RECALL confirmation window. Select YES. The MT8801C reads the specified file. Then, returns to the previous screen, automatically.

• Changing the recall-file display format (WIDE/NARROW)

This paragraph describes how to change the recall-file display format (WIDE/NARROW).

Step	key operation	Description
1.		Execute the Steps 1 to 3 of the recalling procedure in the previous paragraph to display the recalled file.
2.	Next Menu [🥕]	Displays the second page of the function keys.
3.	[Select Display Mode]F7	Displays the file display format selection menu.
4.	[Wide]F7 or [Narrow]F8	Specify the display format.
5.	[return]F12	Returns to the previous menu.

4.9 Operating the file: File Operation screen

To access the floppy disk and display the parameter file directory, delete or writeprotect the parameter file, and initialize the floppy disk; display the File Operation screen according to the following steps.

Note:

This function can only be executed through panel operation.

Step key operation	Description
1. [Main Func on off]	56 Sets the Main Func on.
	The Main Menu 1st page appears at the bottom of the screen
Next Menu [◀]	Displays the second page of the Main Menu.
2. [File Operation]F4	Sets File Operation mode.
	The File Operation screen appears.
	The File function key menu appears on F7 to F12.

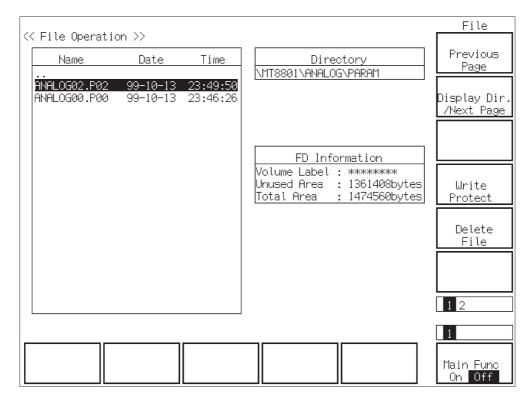


Fig. 4-16 File Operation Screen

Section 4 Operation

• Functions keys on the File Operation screen Main function key: None			
•	Function keys: 2 pages. Use the Next Menu [\blacktriangle] key to scroll to the next page.		
** 1st page **			
[Previous Page]F7:	Displays the previous page of the directory.		
[Display Dir./Next Page]F8:	Accesses the floppy disk and displays the next page of the directory.		
[Write Protect]F10:	Write-protects the specified parameter data file.		
	An asterisk (*) is displayed at the end of the name of the write-protected file.		
	If the specified parameter data file is already protected, write protect can be canceled by		
	pressing this key.		
	Note:		
	This function can only be executed through panel operation.		
[Delete File]F11:	Opens the window for entering the position (number) of the parameter data file to be		
	deleted.		
	Setup range: 0 to 99 (integer)		
	Initial value: 0		
** 2nd page **			
[Format]F7:	Initializes the floppy disk to the specified type. The initialization format is MS-DOS 1.44		
	MB or 720 kB.		
	Note:		
	The format is MS-DOS 1.44 MB or 720 kB.		
	Use the 2HD or 2DD type of 3.5-inch floppy disk.		

• Displaying files

This paragraph describes how to display the files in FD.

Step	key operation	Description
1.		Insert a floppy disk (FD) into the FD driver at the bottom left of the MT8801C.
2.	[Main Func on off]F6	Turn the Main Func on to display the first page of the Main Menu at the bottom of the screen.
3.	Next Menu [◀]	Displays the second page of the Main Menu.
4.	[File Operation]F4	Moves to the File Operation screen. Accesses the FD to display the root directory.
5.	Cursor [🖍][🗸]	Specify the directory to be required.
6.	[Set] or [Enter]	Moves to the specified directory to display its contents.
7.		Repeat the Steps 5 and 6 above to display the required directory.
	A	lata.

Note:

The sub-directories and file name under the selected directory are displayed in the frame on the left of the screen. For directories, only their names are displayed in the "Name" field.

For files, Name/Date/Time are displayed.

The Directory field at the upper right of the screen displays the layer and location of the selected directory. • Write-enabling/write-protecting files

This paragraph describes how to change the file write mode between the write-protected and write-enabled modes.

Step key operation	Description
1.	Select the directory of the desired file by the displaying-file procedure above.
2. Cursor [~][~]	Specify the file.
3. [Write Protect]F10	Changes the file write mode.

• Deleting files

This paragraph describes how to delete the parameter/data files.

Step	key operation	Description
1.		Select the directory of the desired file by the displaying-file procedure above.
2.	Cursor [🖍][🗸]	Specify the file.
3.	[Delete File]F11	Opens the confirmation window.
4.	DELETE FILE? Yes No	Select Yes or No. "Yes" deletes the specified file.

Note:

Once a file is deleted, it cannot be restored.

• Initializing(formatting) floppy disk

This paragraph describes how to initialize a floppy disk.

Step	key operation	Description
1.		Insert a floppy disk (FD) into the FD driver at the lower left of the MT8801C.
		The acceptable FD is the 2HD (1.44 M-bytes) or 2DD (720 k-bytes) type.
2.		Set File Operation mode, as described previously.
3.	Next Menu [🥕]	Displays the second page of the function keys.
4.	[Format]F7	Specifies initialization.
5.	FORMAT DISK? Yes No	The window confirming FORMAT DISK appears on the screen. Select Yes.
6.	Next Menu [🖍]	Returns to the first page of the function keys.

Note:

Once a floppy disk is initialized, the data recorded on the disk is all lost.

4.10 Screen hard copy ... Copy

The copy function transfers a screen display to the printer or floppy disk. Specify a transfer destination and mode on the Instrument Setup screen. Press the Copy key on the front panel to activate the Copy function. While the Copy function is operating, operations (including remote control) such as measurement or internal setting are disabled.

(1) Transfer to the printer

If Hard Copy is set to the Output Device Printer (Parallel) on the Instrument Setup screen, screen display can be printed via the Parallel interface on the rear panel. Printers using the ESC/P command system can be used.

(2) Transfer to the floppy disk

If Hard Copy is set to File on the Instrument Setup screen, the floppy disk driver on the front panel can be used to store data displayed on the screen in the floppy disk. Paragraph 4.9 describes the floppy disks that can be used. Data created on the floppy disk is the image file of the monochrome BMP data format. While the Copy is being executed, the name of the created file "RCA_***.BMP" is displayed on the bottom of the screen (*** is a number beginning with 000).

(Reference) Number of storable BMP files

2DD (720 K bytes): Up to 18 2HD (1.44 M bytes): Up to 37

4.11 Settings relating to remote control and panel key control

1. Remote control interfaces

The remote control interfaces of the MT8801C are classified into the GPIB interface and serial interface (RS-232C interface). Select an interface used on the Instrument Setup screen (see paragraph 4.3.6).

2. Remote control and panel control keys

The keys and lamps described in this section are assigned on the front panel as exclusive keys and lamps.

1) REMOTE lamp and LOCAL key

The REMOTE lamp indicates that the MT8801C is controlled remotely using the GPIB interface or RS-232C interface. When the MT8801C is controlled remotely from an external controller via the GPIB interface or RS-232C interface, the REMOTE lamp lights. While the REMOTE lamp is on, key entry and rotary encoder entry from the front panel are disabled. The LOCAL key is used to cancel the remote control status of the GPIB interface or RS-232C interface. When the LOCAL key is pressed, the REMOTE lamp goes off and key entry and rotary encoder entry from the front panel are enabled.

2) PANEL LOCK key

The PANEL LOCK key is used to enable and disable key entry and rotary encoder entry from the front panel. Use the PANEL LOCK key to prevent an incorrect operation on the front panel for automatic measurement or status holding. When the panel is locked, the green lamp on the PANEL LOCK key lights.

3. Remote control status

If the MT8801C is controlled remotely, the REMOTE lamp on the left of the front panel lights. While the REMOTE lamp is on, key entry and rotary encoder entry from the front panel are disabled. To change from the remote control status to the front panel entry status, execute the following steps:

- 1) Halt the remote control.
- 2) If the REMOTE lamp is on, press the LOCAL key to cancel the REMOTE status.

Section 5 Peformance Tests

This section describes the test equipment, setup, and performance check procedure for testing the performance of the MT8801C Spectrum Analyzer function (option 01).

5.1	Requir	ements for Performance Tests	5-2
5.2	Instrun	nents Required for Performance Test	5-3
5.3	Perform	nance Tests	5-4
	5.3.1	Signal generator	5-4
	5.3.2	AF oscillator	5-17
	5.3.3	RF analyzer	5-22
	5.3.4	Audio analyzer	5-57
	5.3.5	Example of performance test result entry	
		sheet	5-63
5.4	About	Service	5-70

5.1 Requirements for Performance Tests

The performance tests are carried out as a part of preventive maintenance to prevent deterioration of the MT8801C performance.

Use the performance test procedure during acceptance inspection, periodic inspection, and after repair to check the MT8801C performance. The items which is regarded important should be tested periodically as preventive maintenance. This section explains the following test procedures:

- Signal generator
 Output level accurecy measurement
 Spurious measurement
 Harmonics measurement
 FM deviation accuracy
 FM frequency characteristics
 FM distortion
- AF oscillator
 Frequency accuracy measurement
 Output level accurecy
 Waveform distortion
- RF analyzer Power meter accuracy measurement Power meter linearity Frequency counter accuracy measurement FM demodulation deviation accuracy FM demodulating frequency characteristics Demodulation residual FM FM demodulation distortion øM demodulation deviation accuracy øM frequency characteristics Demodulation residual øM øM demodulation distortion FM demodulation output frequency characteristics FM demodulation output distortion
- Audio analyzer AF level measurement accuracy Distortion rate measurement accuracy Frequency measurement accuracy

The performance is recommended to inspect regularly once or twice a year. If the specifications are not met in the performance tests, contact the Service Department of Anritsu Corporation.

5.2 Instruments Required for Performance Test

The instruments required for performance test is shown below.

Instruments Required for Performance Test

	Check item	Measuring instrument	Recommended instrument name (model name)	Reference paragraph
	Output level accuracy measurement	Receiver for calibration Power meter Power sensor	ML2530A ML4803A MA4601A	5.3.1.1
	Spurious measurement Harmonics measurement	Spectrumanalyzer	MS2602A	5.3.1.2 5.3.1.3
Signal generator	FM deviation accuracy	Synthesized signal generator Measuring receiver Mixer	MG3633A HP8902A	5.3.1.4
	FM frequency characteristics FM distortion	Synthesized signal generator Measuring receiver Audio analyzer Mixer	MG3633A HP8902A HP8903B	5.3.1.5 5.3.1.6
	Frequency accuracy measurement	Frequency counter	MF1603A	5.3.2.1
AF oscillator	Output level accuracy Waveform distortion	Audio analyzer	HP8903B	5.3.2.2 5.3.2.3
	Power meter accuracy measurement	Intelligent RF signal generator Fixed attenuatorIntelligent	HP8665B MP721A	5.3.3.1
	Power meter linearity	RF signal generator Power meter Power sensor Power divider	HP8665B ML4803A MA4601A	5.3.3.2
	Frequency counter accuracy measurement	Intelligent RF signal generator	HP8665B	5.3.3.3
RF analyzer	FM demodulation deviation accuracy øM demodulation deviation accuracy	Synthesized signal generator Spectrum analyzer Audio analyzer Mixer	MG3633A MS2602A HP8903B	5.3.3.4 5.3.3.8
	FM demodulation frequency characteristics øM frequency characteristics	Synthesized signal generator Measuring receiver Mixer	MG3633A HP8902A	5.3.3.5 5.3.3.9
	Demodulation residual FM Demodulation residual øM	Synthesized signal generator Mixer	MG3633A	5.3.3.6 5.3.3.10
	FM demodulation distortion øM demodulation distortion	Synthesized signal generator Measuring receiver	MG3633A HP8902A	5.3.3.7 5.3.3.11
	FM demodulation output frequency characteristics	Audio analyzer	HP8903B	5.3.3.12
	FM demodulation output distortion	Mixer		5.3.3.13
Audio analyzer	AF level measurement accuracy Distortion rate measurement accuracy	Audio analyzer Audio analyzer 3-port junctionad	HP8903B HP8903B	5.3.4.1

5.3 Performance Tests

Make sure to have the equipment to be tested and the measuring instruments have warmed up and completely stabilized for at least 30 minutes before starting the test unless otherwise specified. To perform the most accurate measurement, it is also necessary to test under the room temperature, obtain minimum fluctuation of AC supply voltage, and have no problem such as noise, vibration, dust and humidity.

5.3.1 Signal generator

5.3.1.1 Output level accuracy measurement

(1) Measurement range

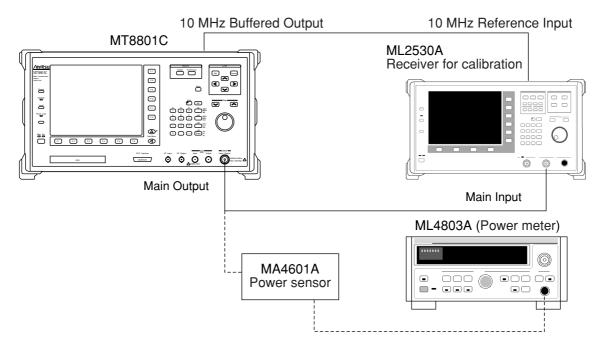
• Level range: +7.0 to -133.0 dBm (auxiliary output connector) -13.0 to -133.0 dBm (main output connector)

(2) Specifications

• Level accuracy: $10 \text{ MHz} \leq \text{Frequency} \leq 2.2 \text{ GHz}$:

 $\pm 1 \text{ dB} (\geq -123 \text{ dBm}, 18 \text{ to } 28 \text{ °C})$

 $\pm 3 \text{ dB} (\geq -133 \text{ dBm})$


Frequency > 2.2 GHz:

±2 dB (≥ −123 dBm, 18 to 28 °C) ±4 dB (≥ −133 dBm)

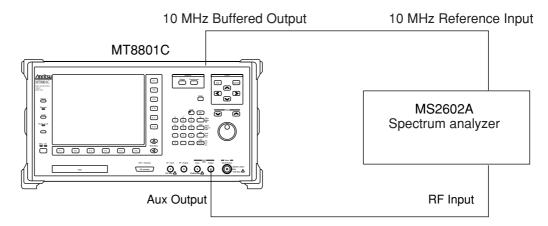
(3) Test instruments

• Receiver for calibration:	ML2530A or the equivalent
• Power meter:	ML4803A or the equivalent
• Power sensor:	MA4601A or the equivalent

(4) Setup

(5)) Test procedure: Output level accuracy measurement							
	Step	Procedure						
	1.	Execute the calibration adjustment of power sensor.						
	2.	Initialize the MT8801C (press the Preset key) and then connect the power sensor to the "AUX" output.						
	3.	Set the measurement frequency for the MT8801C and the calibration factor for the power meter.						
	4.	Set the output level of MT8801C at "+7 dBm" and read the value displayed on the power meter.						
	5.	Similarly repeat the steps 3 and 4 for all the measurement frequencies.						
	6.	Connect the power sensor to the "MAIN" output.						
	7.	Perform the above steps 3 to 5 at the "-18 dBm" output level.						
	8.	Set the receiver for calibration to "Panel Mode: Meas", "Monitor Mode: Manual", "Bandwidth: 10 Hz", and "Average Mode: OFF".						
	9.	Connect the RF input of receiver for calibration to the "AUX" output.						
	10.	Set the measurement frequency to the MT8801C and the receiver for calibration.						
	11.	Perform the following steps when calibrating the error between ranges of receiver for calibration (go to the step 16 when not calibrating):						
		Note:						
		The calibration between ranges is necessary every measurement frequency However, once the calibration is performed at the frequency, it is effectiv until the power is turned Off.						
	12.	Set "Panel Mode: Cal".						
	13.	Set the output level of MT8801C at "-30 dBm" and perform the relative calibration between "Ranges 1 and 2".						
	14.	Set the output level of MT8801C at "-75 dBm" and perform the relative calibration between "Ranges 2 and 3".						
	15.	Set "Panel Mode: Meas".						
	16.	Set "+7 dBm" for the MT8801C.						
	17.	Set "Measure to Reference" when the measurement result of receiver for calibration stabilizes.						
	18.	Then set the difference of the power meter measured value (step 4) subtracted by the set value (+7 dBm in this case) as "Offset" (the value displayed on the receiver for calibration is the absolute value).						
	19.	Change the level of MT8801C and read the displayed value in the receiver for calibration.						
	20.	Repeat the measurement steps 10 to 19 for all the measurement levels and measurement frequencies.						
	21.	Similarly perform the measurement for the "MAIN" output.						

Section 5 Peformance Tests


[AUX side] (Error dB)

\square		10.01 MHz	Z	1	800.01 MH	łz		1900.01 N	1Hz		2999.99 N	MHz	
	Effective	Measured	Effective	Measurement									
	lower limit	value	upper limit	uncertainty									
+ 7.0 dBm		dB			dB			dB			dB		
+ 6.0 dBm		dB			dB			dB			dB		
+ 5.0 dBm		dB			dB			dB			dB		
+ 4.0 dBm		dB			dB			dB			dB		
+ 3.0 dBm		dB			dB			dB			dB		
+ 2.0 dBm		dB			dB			dB			dB		
+ 1.0 dBm		dB			dB			dB			dB		
0.0 dBm		dB			dB			dB			dB		
-1.0 dBm		dB			dB			dB			dB		
–2.0 dBm		dB			dB			dB			dB		
-3.0 dBm	-0.76 dB	dB	+0.76 dB	-0.76 dB	dB	+0.76 dB	-0.76 dB	dB	+0.76 dB	-1.76 dB	dB	+1.76 dB	±0.24 dB
-13.0 dBm		dB			dB			dB			dB		
–23.0 dBm		dB			dB			dB			dB		
-33.0 dBm		dB			dB			dB			dB		
-43.0 dBm		dB			dB			dB			dB		
–53.0 dBm		dB			dB			dB			dB		
-63.0 dBm		dB			dB			dB			dB		
–73.0 dBm		dB			dB			dB			dB		
-83.0 dBm		dB			dB			dB			dB		
–93.0 dBm		dB			dB			dB			dB		
-103.0 dBm		dB			dB			dB			dB		
-113.0 dBm	-0.53 dB	dB	+0.53 dB	-0.53 dB	dB	+0.53 dB	-0.53 dB	dB	+0.53 dB	-1.53 dB	dB	+1.53 dB	
-123.0 dBm	-0.55 uB	dB	10.35 uB	-0.55 uB	dB	10.55 00	-0.55 UB	dB	10.55 uB	-1.55 uB	dB	11.55 ub	±0.47 dB
-133.0 dBm	-2.53 dB	dB	+2.53 dB	-2.53 dB	dB	+2.53 dB	-2.53 dB	dB	+2.53 dB	-3.53 dB	dB	+3.53 dB	

[Main side] (Error dB)

\smallsetminus	10.01 MHz		2		800.01 MF	lz		1900.01 N	1Hz	2999.99 MHz			Management
	Effective	Measured	Effective	Effective	Measured	Effective	Effective	Measured	Effective	Effective	Measured	Effective	Measurement
	lower limit	value	upper limit	lower limit	value	upper limit	lower limit	value	upper limit	lower limit	value	upper limit	uncertainty
-18.0 dBm		dB			dB			dB			dB		
-19.0 dBm		dB			dB			dB			dB		
-20.0 dBm		dB			dB			dB			dB		
– 21.0 dBm		dB			dB			dB			dB		
– 22.0 dBm		dB			dB			dB			dB		
– 23.0 dBm		dB			dB			dB			dB		
– 24.0 dBm		dB			dB			dB			dB		
– 25.0 dBm		dB			dB			dB			dB		
– 26.0 dBm	-0.84 dB	dB	+0.84 dB	-0.84 dB	dB	+0.84dB	-0.84 dB	dB	+0.84 dB	-1.84 dB	dB	+1.84 dB	±0.16 dB
– 27.0 dBm	-0.64 uB	dB	+0.64 uB	-0.64 UB	dB	+0.04ub	-0.84 ub	dB	+0.04 ub	-1.04 UD	dB	+1.04 UD	±0.10 dB
– 28.0 dBm		dB			dB			dB			dB		
– 33.0 dBm		dB			dB			dB			dB		
– 43.0 dBm		dB			dB			dB			dB		
– 53.0 dBm		dB			dB			dB			dB		
– 63.0 dBm		dB			dB			dB			dB		
– 73.0 dBm		dB			dB			dB			dB		
– 83.0 dBm		dB			dB			dB			dB		
– 93.0 dBm		dB			dB			dB			dB		
– 103.0 dBm	-0.83 dB	dB	+0.83 dB	-0.83 dB	dB	+0.83 dB	-0.83 dB	dB	+0.83 dB	-1.83 dB	dB	+1.83 dB	±0.17 dB
– 113.0 dBm	–0.57 dB	dB	+0.57 dB	–0.57 dB	dB	+0.57 dB	–0.57 dB	dB	+0.57 dB	–0.57 dB	dB	+1.57 dB	
– 123.0 dBm	0.07 010	dB		0.07 0.0	dB	10107 dB	0.07 010	dB	· · · · · · · · · · · · · · · · · · ·	0.07 010	dB	· · · · · · · · · · · · · · · · · · ·	±0.43 dB
– 133.0 dBm	-2.57 dB	dB	+2.57 dB	-2.57 dB	dB	+2.57 dB	-2.57 dB	dB	+2.57 dB	-3.57 dB	dB	+3.57 dB	

Spurious measurement (1) Specifications • Spurious: (Condition 1) ≤-50 dBc (without modulation) Offset frequency: 100 kHz ≤50 MHz Carrier frequency: 1300 MHz ≤1400 MHz 2000 MHz ≤2100 MHz 2000 MHz ≤2100 MHz (Condition 2) ≤-40 dBc: Entire bandwidth (2) Test instruments • Spectrum analyzer: MS2602A or the equivalent

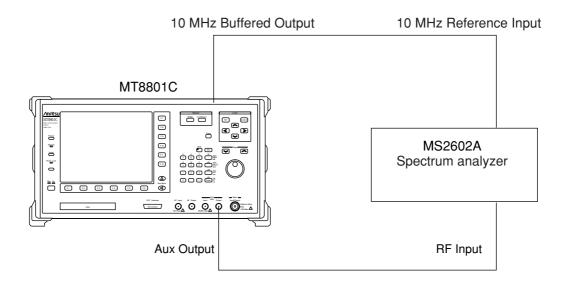
(4) Test procedure: Spurious measurement

5.3.1.2

Step	Procedure				
1.	Set the measurement frequency and the output level (+7 dBm) for the MT8801C, and set the peak level as the reference at the 100-Hz span from the spectrum analyzer, then read and record the level (MeasureRef).				
2.	For the carrier frequency with the sideband element specifications, set the frequency span at 1 MHz and measure the carrier frequencies from ± 100 kHz to 50 MHz.				
3.	Then set the frequency span at 105 MHz and measure the frequency range up to 4000 MHz at the 100-MHz interval, and determine whether the harmonic-suppressed one meets the specification or not.				
4.	Measure the carrier frequencies up to 3000 MHz at the 100-MHz interval for the above steps 1 to 3.				

Spurious measurement

		Frequency	Measured value	Effective upper limit	Measurement uncertainty
Condition 1	The worst value	MHz	dBc	-52.2 dBc	2.2 dB
Condition 2	The worst value	MHz	dBc	-42.2 dBc	2.2 dB


5.3.1.3 Harmonics measurement

(1) Specifications

• Harmonics: ≤ -25 dBc

(2) Test instruments

- Spectrum analyzer: MS2602A or the equivalent
- (3) Setup

(4) Test procedure: Harmonics measurement

Step	Procedure
1.	Set the output level (+7 dBm) and the measurement frequency for the MT8801C, set the peak level as the reference at the 100–Hz span from the spectrum analyzer, then read and record the level.
2.	Set the frequency span at 10 kHz and measure from the second to the fifth harmonics in the range up to 6 GHz, and determine whether they meet the specification or not.
3.	Measure the carrier frequencies up to 3000 MHz at the 100 MHz interval for the above steps 1 and 2.

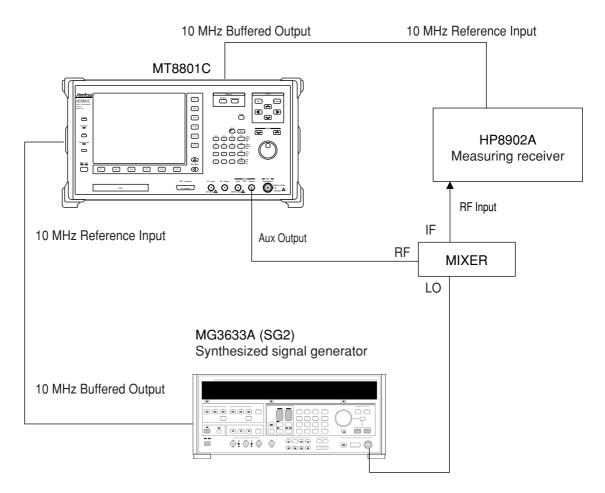
Harmonics measurement

	Frequency	Measured value	Effective upper limit	Measurement uncertainty
The worst value	MHz	dBc	-27.2 dBc	2.2 dB

5.3.1.4 FM deviation accuracy

(1) Specifications

 ±5% of set value ±1 digit (Internal modulation frequency: 1 kHz excluding residual FM)


(2) Test instruments

- Measuring receiver: HP8902A or the equivalent
- Synthesized signal generator: MG3633A or the equivalent
- Mixer

(3) Notes on test

• Set the demodulation bandwidth of the measuring receiver to 0.3 to 3 kHz.

(4) Setup

Section 5 Peformance Tests

Step		Procedure)					
1.	Initialize the MT8801C, the signal generator and the measuring receiver.							
2.	Set the MT8801C as follows:							
	Set RF Input/Output to AUX of	n the Instrument Setu	up screen.					
3.	Turn On the Main Func of MT	8801C and press the	Analog Teste	r key (F3).				
4.	Display the RX Measure scree	n of MT8801C to set	as follows:					
	[Modulation function]							
	AF Osc.1: On							
	AF Osc.2: Off							
	AF Osc.1 Frequency: 1 kHz							
5.	Set the measurement frequency	(RF) and the output	level (+7 dBi	m) for the MT8801C.				
6.	Set the RF frequency (690 MH	z) and the output lev	el (+17 dBm)	for the signal generator.				
	The RF frequency combination	s of signal generator	and MT8801	C"				
	RF frequency of MT8801C:	10 MHz	1500 MHz	3000 MHz				
	RF frequency of signal genera	or: 690 MHz	800 MHz	2300 MHz				
7.	Set the measuring receiver as f	ollows:						
	Measurement Mode: FM							
	LPF: 3 kHz							
	HPF: 300 H	Z						
	Detection Mode: (p_p)	2						
	Hold Time: 0.1 se	с						
	Frequency: 700 N	IHz						
8.	Set the measuring deviation in	MT8801C, adjust the	measuring rec	ceiver range, and perform the manua				
	tuning.							
9.	Record the measurement resu	It of measuring recei	iver and obtai	in the accuracy using the followin				
	calculation expression:							
	Accuracy (%) = $\{(N \in \mathbb{N}) \mid n \in \mathbb{N}\}$	leasurement result/Se	etting value) -	$-1\} \times 100$				
10.	Similarly repeat the steps 8 and	19 using the step 6 co	ombinations f	or all deviations.				
11.	Turn Off the AF Osc.1 output	and set the AF Osc.2	output to On.					
12.	Also repeat the measurement s	teps 8 to 11 for AF C)sc.2.					
	•	-						

(5) Test procedures: FM deviation accuracy

5.3 Performance Tests

Acci	uracy	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
	500 Hz	%	%	%		-6.3 %	+6.3 %
0501	1 kHz	%	%	%		-5.4 %	+5.4 %
OSC.1	10 kHz	%	%	%		-4.6 %	+4.6 %
	40 kHz	%	%	%	±0.5 %	-4.5 %	+4.5 %
	500 Hz	%	%	%	10.5 70	-6.3 %	+6.3 %
0500	1 kHz	%	%	%		-5.4 %	+5.4 %
OSC.2	10 kHz	%	%	%		-4.6 %	+4.6 %
	40 kHz	%	%	%		-4.5 %	+4.5 %

FM deviation accuracy of signal generator

5.3.1.5 FM frequency characteristics

(1) Specifications

- Internal modulation frequency: 20 Hz to 20 kHz
- Frequency characteristics:
- ±0.5 dB
 (Referred to 1 kHz as reference, 0.3 to 3 kHz, frequency deviation: 4 kHz)
 ±1 dB
 (Referred to 1 kHz as reference, 20 Hz to 20 kHz, frequency deviation: 4 kHz)

(2) Test instruments

- Measuring receiver: HP8902A or the equivalent
 Audio analyzer: HP8903B or the equivalent
 Synthesized signal generator: MG3633A or the equivalent
- Mixer

(3) Setup

10 MHz Reference Input 10 MHz Buffered Output MT8801C /inrit õõ HP8902A 0 10 10 10 Measuring receiver HP8903B άđ Audio analyzer (a) (d) **RF** Input AF Output isi' meter o_₄o o_₄q C Input (High) (with 600 Ω 10 MHz Reference Aux Output AF Input IF Input Termination) MIXER RF Demodulation output 10 MHz Buffered Output LO 0:0:0 0 MG3633A Synthesized signal generator

Step	Procedure								
1.	Initialize the MT8801C, the signal generator, the measuring receiver, and the audio analyzer.								
2.	Set the measuring receiver as follows:								
	Measurement Mode: FM								
	HPF: All Off (<20 Hz)								
	LPF: All Off (>200 kHz)								
	Frequency: 700 MHz								
3.	Set the audio analyzer as follows:								
	Measurement Mode: AC Level								
	Display: Log								
	All LP Filter: Off								
	All Plug-In HP/BP Filter: Off								
4.	Set the MT8801C as follows:								
	Set RF Input/Output to Aux on the Instrument Setup screen.								
5.	Turn On the Main Func of MT8801C and press the Analog Tester key (F3).								
6.	Display the RX Measure screen of MT8801C to set as follows:								
	[RF level function]								
	RF Level: +7.0 dBm								
	[RF Frequency function]								
	RF frequency: Shown below								
	[Modulation function]								
	AF Osc.1: On								
	AF Osc.2: Off								
	AF Osc.1 Frequency: 1 kHz AF Osc.1 Deviation: 4 kHz								
7									
7.	Set the measurement frequency (RF) for the MT8801C.								
8.	Set the RF frequency (690 MHz) and the output level (+17 dBm) for the signal generator.								
	The RF frequency combinations of signal generator and MT8801C"								
	RF frequency of signal generator:690 MHz800 MHz2300 MHzRF frequency of MT8801C:10 MHz1500 MHz3000 MHz								
0									
9.	Measure the demodulation output of measuring receiver by using the audio analyzer.	(15							
10.	Change the AF Osc.1 frequency in accordance with the table below and measure the deviation against the level at 1 kHz.	(dE							
11.	Turn Off the AF Osc.1 output and set the AF Osc.2 output to On.								
12.	Repeat the steps 6 to 10 similarly for the measurement using AF Osc.2.								

(4) Test procedures: FM frequency characteristics

Section 5 Peformance Tests

	uency teristics	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
	20 Hz	dB	dB	dB		-0.83 dB	+0.83 dB
	300 Hz	dB	dB	dB		-0.33 dB	+0.33 dB
OSC.1	1 kHz	0 dB	0 dB	0 dB		_	_
	3 kHz	dB	dB	dB		-0.33 dB	+0.33 dB
	20 kHz	dB	dB	dB	±0.17	-0.83 dB	+0.83 dB
	20 Hz	dB	dB	dB	±0.17	-0.83 dB	+0.83 dB
	300 Hz	dB	dB	dB		-0.33 dB	+0.33 dB
OSC.2	1 kHz	0 dB	0 dB	0 dB		_	_
	3 kHz	dB	dB	dB		-0.33 dB	+0.33 dB
	20 kHz	dB	dB	dB		-0.83 dB	+0.83 dB

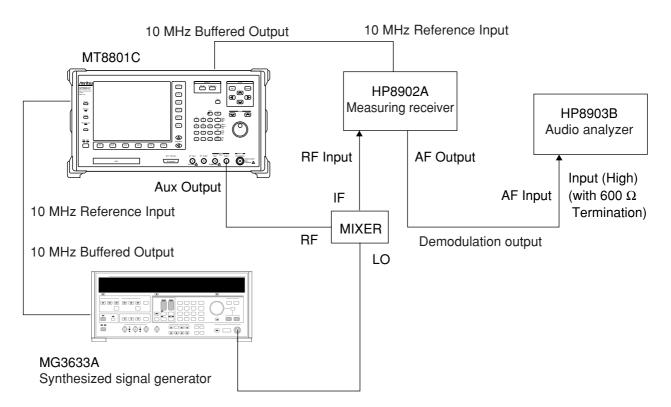
FM frequency characteristics of signal generator

5.3.1.6 FM distortion

(1) Specifications

• Modulation distortion: Maximum -50 dB

(Internal modulation frequency: 1 kHz, frequency deviation: 5 kHz, demodulation bandwidth: 0.3 to 3 kHz)


(2) Test instruments

- Measuring receiver: HP8902A or the equivalent
- Audio analyzer: HP8903B or the equivalent
- Synthesized signal generator: MG3633A or the equivalent
- Mixer

(3) Notes on test

- Set the demodulation bandwidth of the audio analyzer to 0.3 to 3 kHz.
- If an audio analyzer with much residual FM is used, it affects distortion measurement when the amount of FM deviation is small. Use an audio analyzer with little residual FM.

(4) Setup

Section 5 Peformance Tests

(5) Test procedures: FM distortion

Step			Procedure	e			
1.	Initialize the MT88010	C, the signal ge	enerator, the m	easuring recei	ver, and the audio analyzer.		
2.	Set the MT8801C as follows:						
	Set RF Input/Output to	AUX on the I	nstrument Set	up screen.			
3.	Turn On the Main Fun	c of MT8801C	and press the	Analog Tester	r key (F3).		
4.	Display the RX Measu	re screen of M	T8801C to set	as follows:			
	[Modulation function]						
	AF Osc.1:	On					
	AF Osc.2:	Off					
	AF Osc.1 Frequency:	1 kHz					
	AF Osc.1 Deviation:	5 kHz					
5.	Set the measuring rece	iver as follows	and execute t	he FM calibra	tion:		
	Measurement Mode:	FM					
	LPF:	3 kHz					
	HPF:	300 Hz					
	De-enphasis:	Off					
	Detection Mode:	(p_p)/2					
	Hold Time:	0.1 sec					
	Range:	10 kHz					
	Frequency:	700 MHz					
6.	Set the audio analyzer	as follows:					
	Measurement Mode:	Distortion					
	Display:	Log					
	Unit:	dB					
	All LP Filter:	Off					
	All HP/BP Filter:	Off					
7.	Set the RF frequency a	nd the output	level (+7 dBm) for the MT88	801C.		
8.	Set the RF frequency (690 MHz) and	the output lev	el (+17 dBm)	for the signal generator.		
	The RF frequency com	binations of si	gnal generator	and MT8801	C"		
	RF frequency of MT88	801C:	10 MHz	1500 MHz	3000 MHz		
	RF frequency of signal	generator:	690 MHz	800 MHz	2300 MHz		
9.	Perform the manual tur	ning for the me	easuring receiv	ver.			
10.	Read the measurement	t result of audi	io analyzer aft	er checking th	ne measurement value of measuring		
	receiver is stabilized.		-	-			

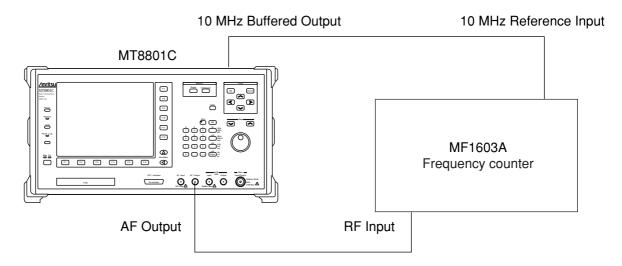
11. Repeat the measurement steps 7 to 10 similarly for all the measurement frequencies.

FM distortion of signal generator

	Frequency characteristics		10 MHz	1300 MHz	3000 MHz	Measurement uncertainty	Effective upper limit
(OSC.1	1 kHz	dB	dB	dB	±1.6 dB	-51.6 dB
(OSC.2	1 kHz	dB	dB	dB	±1.0 dD	

5.3.2 AF oscillator

5.3.2.1 Frequency accuracy measurement


(1) Specifications

• Synchronous with the reference crystal oscillator

(2) Test instruments

• Frequency counter: MF1603A or the equivalent

(3) Setup

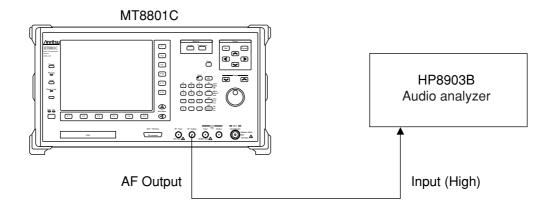
(4) Test procedure: Frequency accuracy measurement

Step	Procedure					
1.	Set "Input: Ach", "Attenuator: OFF", "Gate Time: 2 sec", and "ppm Mode: OFF" for the frequency counter.					
2.	Set the measurement frequency and the output level for the MT8801C, read the measurement result of frequency counter, and determine whether it is ± 1 mHz or less so that the synchronous specification is met.					
3.	Change the frequency from 30 Hz to 20 kHz and repeat the measurement.					

Frequency accuracy	Measured value	Error	Measurement uncertainty
20 Hz	Hz	Hz	
1 kHz	Hz	Hz	
10 kHz	Hz	Hz	<±1 mHz
20 kHz	Hz	Hz	

Frequency accuracy of AF oscillator

5.3.2.2 Output level accuracy


(1) Specifications

Measure at a bandwidth less than 30 kHz. Unbalanced output: ±0.5 dB Floating output: ±2 dB (frequency: 1 kHz, output level ≥ 1 mV) Unbalanced output: ±1 dB (20 Hz ≤ Frequency ≤ 20 kHz, output level ≥ 1 mV)

(2) Test instruments

• Audio analyzer: HP8903B or the equivalent

(3) Setup

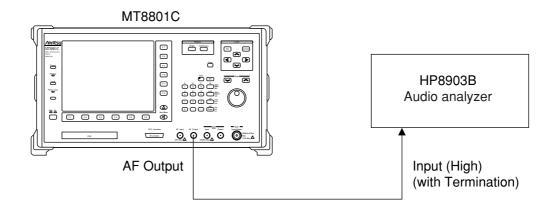
Step		Procedure				
1.	Initialize the MT8801C and the audio analyzer (press the Preset key).					
2.	Turn On the Main Func	c of MT8801C and press the Analog Tester key (F3).				
3.	Display the AF Measur [AF Osc. function]	e screen of MT8801C to set as follows:				
	AF Osc.1: AF Osc.2:	On Off				
4.	Set the audio analyzer a	as follows:				
	Measurement Mode:	AC Level				
	Unit:	Volt				
	Scale:	Linear				
	All Plug-in HP/BP Filter:	Off				
	LPF:	30 kHz				
5.	Set the measuring level	in the MT8801C.				
6.	Set the AF frequency f measurement result of a	for the MT8801C and read the displayed value after checking the stabilized audio analyzer.				
7.	Obtain the accuracy ba expression:	ased on the read result and the setting level using the following calculatio				
	Accuracy (dB) = 20 Log ₁₀ (Measurement result/Setting level)				
8.	Repeat the steps 6 and 7	7 for all the measurement frequencies.				
9.	Turn Off the AF Osc.1	output and set the AF Osc.2 output to On.				
10.	Similarly repeat the me	asurement steps 5 to 8 for AF Osc.2 as well.				

(4) Test procedures: Output level accuracy

Output level accuracy of AF oscillator

			20 Hz			1 kHz			10 kHz			20 kHz		
Level accuracy	AF Level	Effective lower limit	Measured value	Effective upper limit			Effective upper limit		Measured value	Effective upper limit		Measured value	Effective upper limit	Measurement uncertainty
	3 V	-0.83	dB	+0.83	-0.33	dB	+0.33	-0.83	dB	+0.83	-0.83	dB	+0.83	±0.17 dB
Osc.1	1 V	-0.83	dB	+0.83	-0.33	dB	+0.33	-0.83	dB	+0.83	-0.83	dB	+0.83	±0.17 dB
	1 mV	-0.66	dB	+0.66	-0.17	dB	+0.17	-0.66	dB	+0.66	-0.66	dB	+0.66	±0.34 dB
	3 V	-0.83	dB	+0.83	-0.33	dB	+0.33	-0.83	dB	+0.83	-0.83	dB	+0.83	±0.17 dB
Osc.2	1 V	-0.83	dB	+0.83	-0.33	dB	+0.33	-0.83	dB	+0.83	-0.83	dB	+0.83	±0.17 dB
	1 mV	-0.66	dB	+0.66	-0.17	dB	+0.17	-0.66	dB	+0.66	-0.66	dB	+0.66	±0.34 dB

5.3.2.3 Waveform distortion


(1) Specifications

Measure at a bandwidth less than 30 kHz.
 Maximum -50 dBc (frequency = 1 kHz, output level = 1 V)
 Maximum -45 dBc (20 Hz ≤ frequency ≤ 20 kHz, output level = 1 V).

(2) Test instruments

• Audio analyzer: HP8903B or the equivalent

(3) Setup

Step		Procedure
1.	Initialize the MT8801C	and the audio analyzer (press the Preset key).
2.	Turn On the Main Func	of MT8801C and press the Analog Tester key (F3).
3.	Display the AF Measure	e screen of MT8801C to set as follows:
	[AF Osc. function]	
	AF Osc.1:	On
	AF Osc.2:	Off
4.	Set the audio as follows	
	Measurement Mode:	Distortion
	Unit:	dB
	All Plug-in HP/BP Filter:	Off
	LPF:	30 kHz
5.	Set the measuring level	at 1 V in the MT8801C.
6.	Set the internal modulat	tion frequency to be measured in the MT8801C.
7.	Read the displayed valu	e of audio analyzer and check whether the result is under the specification
	value.	
8.	Change the internal mo	dulation frequency and repeat the step 6.
9.	Turn Off the AF Osc.1	output and set the AF Osc.2 output to On.
10.	Similarly repeat the me	asurement steps 5 to 9 for AF Osc.2 as well.

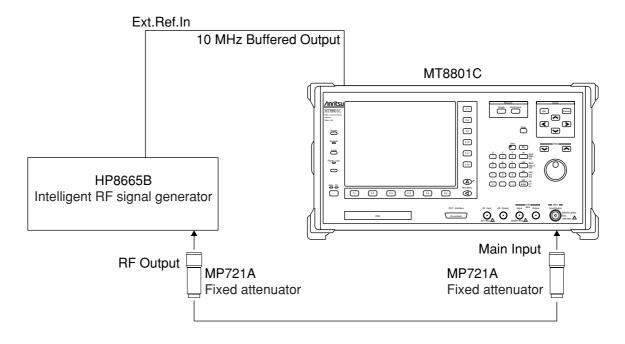
(4) Test procedures: Waveform distortion

Waveform distortion of AF oscillator

Distortion	20 Hz	1 kHz	10 kHz	20 kHz			
OSC.1	dB	dB	dB	dB			
OSC.2	dB	dB	dB	dB			
Measurement uncertainty		±1					
Effective upper limit	-46 dB	-51 dB	-46 dB	46 dB			

5.3.3 RF analyzer

5.3.3.1 Power meter accuracy measurement


(1) Specifications

- $\pm 10\%$ (after the calibration using the Main connector and the built-in broadband power meter)
- ±1dB (after the calibration using the AUX connector with the Tx Ref Level larger than -12 dBm in the ambient temperature range between 18 and 28 °C)

(2) Test instruments

- Intelligent RF signal generator: HP8665B or the equivalent
- Fixed attenuator: MP721A or the equivalent

(3) Setup

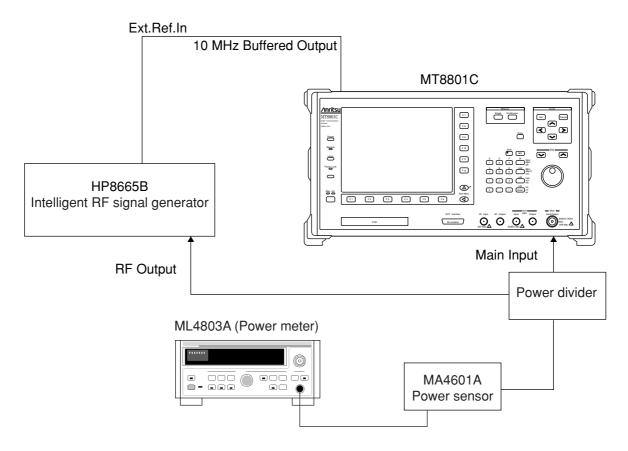
Step	Procedure				
1.	Obtain the calibration data of the signal generator.				
2.	Initialize the MT8801C (press the Preset key).				
3.	Set the MT8801C as follows:				
	Set RF Input/Output to Main on the Instrument Setup screen.				
4.	Turn On the Main Func of MT8801C and press the Analog Tester key (F3).				
5.	Display the TX Measure screen of MT8801C and execute "Zero Set" in the status without input.				
6.	Turn On the signal generator output.				
7.	Set the measurement frequency for each instrument and set the calibrated output level for the signagenerator.				
8.	Execute "Adjust Range" and "Manual Calibration" using MT8801C.				
9.	Read indication values corresponding to "Watt" and "dBm" when "Main Input" and "Aux Input" as selected respectively to determine whether they meet the specifications.				
10.	Perform the steps 3 to 9 mentioned above for each input connector, and each level or measurement frequencies.				

Main	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty	Effective lower limit	Effective upper limit
+10 dBm	dB	dB	dB	dB	±3.6%	-6.4%	+6.4%
0 dBm	dB	dB	dB	dB			

Aux	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty	Effective lower limit	Effective upper limit
+10 dBm	dB	dB	dB	dB	±0.24 dB	-0.76 dB	+0.76 dB
0 dBm	dB	dB	dB	dB			
-10 dBm	dB	dB	dB	dB			
-20 dBm	dB	dB	dB	dB			

Power meter measurement accuracy

5.3.3.2 Power meter linearity


(1) Specifications

• ±0.3 dB (0 to -30 dB)

(2) Test instruments

- Intelligent RF signal generator: HP8665B or the equivalent
- Power meter:
- ML4803A or the equivalent
- Power sensor: MA4601A or the equivalent
- Power divider

(3) Setup

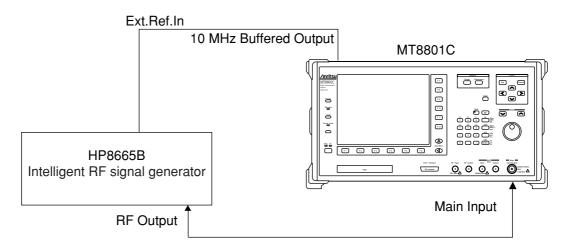
Step	Procedure
1.	Obtain the calibration data of the signal generator.
2.	Initialize the MT8801C (press the Preset key).
3.	Set the MT8801C as follows:
	Set RF Input/Output to Main on the Instrument Setup screen.
4.	Turn On the Main Func of MT8801C and press the Analog Tester key (F3).
5.	Display the TX Measure screen of MT8801C.
6.	Set the measurement frequency for each instrument and the +16 dBm output for the signal generate and execute "Adjust Range". Set the power meter unit to be (dB).
7.	Execute "Manual Calibration" and "Measure Single" using MT8801C and then read and record the F Power" measurement result (MP_0).
8.	Set the output level of signal generator to -10 dBm, execute "Measure Single", and then read the "F Power" measurement result (MP) and the power meter measurement result (RP) to calculate t linearity using the following expression. (Linearity) = MP-MP ₀ -RP
9.	Repeat the step 8 up to the reference level of -30 dB .
10	Perform the above steps 3 to 9 for each input connector and every measurement frequencies

10. Perform the above steps 3 to 9 for each input connector and every measurement frequencies	10.	Perform the above steps 3	3 to 9 for each input	connector and every	measurement frequencies.
---	-----	---------------------------	-----------------------	---------------------	--------------------------

Main	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty	Effective lower limit	Effective upper limit
-10 dB	dB	dB	dB	dB			
-20 dB	dB	dB	dB	dB	±0.07 dB	-0.23 dB	+0.23 dB
-30 dB	dB	dB	dB	dB			

Power meter linearity

Aux	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty	Effective lower limit	Effective upper limit
-10 dB	dB	dB	dB	dB			
-20 dB	dB	dB	dB	dB	±0.07 dB	–0.23 dB	+0.23 dB
-30 dB	dB	dB	dB	dB			


5.3.3.3 Frequency counter accuracy measurement

(1) Specifications

• Accuracy ± 10 Hz of the reference crystal oscillator

(2) Test instruments

- Intelligent RF signal generator: HP8665B or the equivalent
- (3) Setup

(4) Test procedures: Frequency counter measurement accuracy

Stan	Dreadure
Step	Procedure
1.	Initialize the signal generator, then set the output level to -5 dBm.
2.	Initialize the MT8801C (press the Preset key).
3.	Set the MT8801C as follows:
	Set RF Input/Output to Main on the Instrument Setup screen.
4.	Turn On the Main Func of MT8801C and press the Analog Tester key (F3).
5.	Set the MT8801C as follows and display the TX Measure screen:
	TX Measure Ref Level: -5 dBm
6.	Set the measurement frequency for each instrument, read the indication value of "RF Frequency" after
	executing "Measure Single", then check whether the difference from the setting frequency is within the
	specification value.
7.	Repeat the measurement steps 1 to 6 for each input connector and every measurement frequencies.

However, set the output level to -30 dBm for the "Aux Input" measurement.

	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty		Effective upper limit
Main –15 dBm	Hz	Hz	Hz	Hz	10.01	0.00 11-	+9.99 Hz
Aux –40 dBm	Hz	Hz	Hz	Hz Hz +0.01 -9.99 Hz	±0.01	-9.99 HZ	+9.99 ΠZ

Frequency counter measurement accuracy

5.3.3.4 FM demodulation deviation accuracy

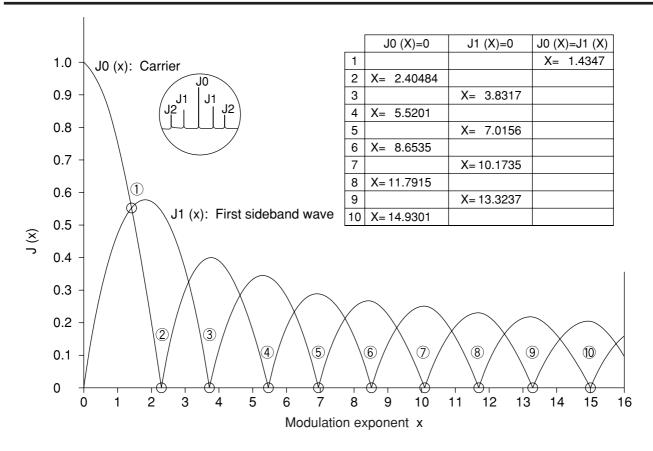
(1) Specifications

• 1% of indication value + residual FM (Demodulation frequency: 1 kHz)

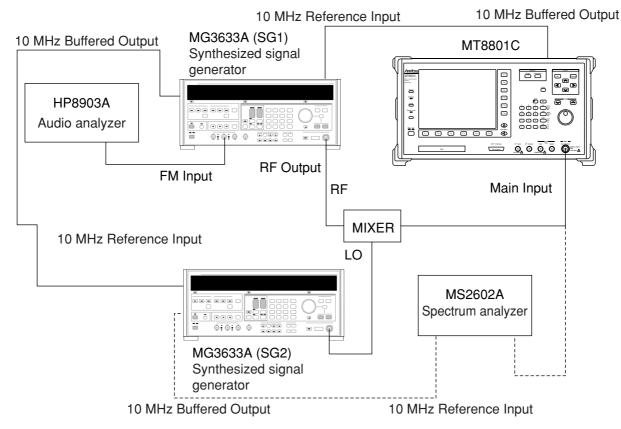
(2) Test instruments

- Synthesized signal generator: MG3633A or the equivalent
- Audio analyzer: HP8903A or the equivalent
- Spectrum analyzer: MS2602A or the equivalent
- Mixer

(3) Notes on test


• Calibrating FM deviation of signal generator

The figure below shows the relationship among modulation exponent x, carrier element J0 (x) and first sideband wave element J1 (x) of the FM-modulated signal. The relationship among modulation exponent x, FM deviation fd, and modulation frequency fp can be represented by fd = fp*x. Therefore, when the modulation frequency is 1 kHz, the FM deviations listed in the table below make carrier element J0 (x) zero. The table below lists the residuals of the carrier erasing elements and calibration accuracies of the FM deviations.


FM deviations to be calibrated and calibration accuracies for modulating frequency of 1 kHz

J0 (x)=0 (CW=0) count and FM deviation to		Erasing element residual	
be calibrated	Calibration accuracy = $\pm 0.2\%$	Calibration accuracy = $\pm 0.5\%$	Calibration accuracy = $\pm 1\%$
CW=0 (1st time)	-52 dB	-43.6 dB	-38.1 dB
2.40484 kHz	(0.00250)	(0.00663)	(0.0124)
CW=0 (2nd time)	-48.6 dB	-40.6 dB	-34.6 dB
5.52009 kHz	(0.00374)	(0.00937)	(0.0187)
CW=0 (3rd time)	-46.6 dB	-38.6 dB	-32.7 dB
8.6535 kHz	(0.00468)	(0.0117)	(0.0233)
CW=0 (4th time)	-45.8 dB	-37.2 dB	-31.3 dB
11.7915 kHz	(0.0515)	(0.0138)	(0.0271)
CW=0 (5th time)	-44.2 dB	-36.3 dB	-30.3 dB
14.9301 kHz	(0.0615)	(0.0154)	(0.0306)

(4) Setup

Step		Procedure			
Preparation 1	before measurement (pre	e-calibration)			
1.	Initialize the signal g	enerators (SG1 and SG2), the audio analyzer, and the spectrum analyzer.			
2.	Set the signal generat	tor (SG1) as follows and turn On the output:			
	Output Level:	+10 dBm			
	Frequency:	1400 MHz			
	FM:	External AC			
	Deviation:	5 kHz			
	Internal Mod Freq:	1 kHz			
3.	Set the signal generat	tor (SG2) as follows and turn On the output:			
	Output Level:	+17 dBm			
	Frequency:	900 MHz			
4.	Set the audio analyze	er as follows:			
	Frequency:	1 kHz			
	Level:	0 V			
5.	Set the spectrum anal	lyzer as follows:			
	Frequency:	500 MHz			
	Ref Level:	0 dBm			
	Span:	100 Hz			
6.		" and "Peak to CF" using the spectrum analyzer after the above setting and record			
	the peak level at this	time.			
7.	Set "Zone Width: 2 I	Div" of the spectrum analyzer to be in the "Zone Sweep" mode.			
8.	-	Gradually increase the output level of audio analyzer and monitor the point (DEV1) where the peak level becomes smallest by using the spectrum analyzer.			
9.	•	ad value at the smallest level with the level recorded in the step 6, check whethe s 52 dB or larger, and record the output level of audio analyzer (SET1) at this time			
10.	check whether each o	e points where the level drops to the second to fifth by using the audio analyzer of level differences is "48.6 dB, 46.6 dB, 45.8 dB, or 44.2 dB" or larger, and record udio analyzer (SETn).			
11.	Turn Off the audio ar	nalyzer and the signal generators (SG1 and SG2) to complete the pre-calibration			
Measuremen	nt (performance test)				
12.	Initialize the MT880	1C, the signal generators (SG1 and SG2), and the audio analyzer.			
13.	Set the MT8801C as	follows:			
		to Main on the Instrument Setup screen.			
	1 1	ef Level to 0 dBm on the Setup Common Parameter screen.			
14.	Turn On the Main Fu	inc of MT8801C and press the Analog Tester key (F3).			

(5) Test procedure: FM demodulation deviation accuracy

Turn On the Main Func of MT8801C and press the Analog Tester key (F3).

Step		Procedure			
15.	Display the TX Me	asure screen on the MT8801C and set as follows:			
	[AF Osc. function]				
	AF OSC.1:	Off			
	AF OSC.2:	Off			
	[Deviation function]			
	Demod. :	FM			
	HPF:	300 Hz			
	LPF:	3 kHz			
	Det Mode:	(p_p)/2			
16.	Set the signal gener	ator (SG1) as follows and turn On the output:			
	Output Level:	+10.0 dBm			
	Frequency:	1400 MHz			
	FM:	External AC			
	Deviation:	5 kHz			
17.	Set the signal generator (SG2) as follows and turn On the output:				
	Output Level:	-17.0 dBm			
18.	Set the audio analy:	zer as follows:			
	Frequency:	1 kHz			
	Level:	0 V			
19.	Set the RF frequence	ties for the MT8801C and the signal generator (SG2).			
	RF frequencies of M	AT8801C: 10 MHz 1500 MHz 3000 MHz			
	RF frequencies of S	G2: 1390 MHz 100 MHz 1600 MHz			
20.	Set one of the pre-c	alibrated levels (SETn) for the audio analyzer.			
21.	Read the measurem	ent result after the "Adjust Range" of MT8801C, compare it with each expected			
	value of vessel poir	its, and check whether it is within the specification value.			
22.	Change the audio a	nalyzer setting and repeat the step 21.			
23.	Change the RF freq	uency and repeat the above measurement steps 20 to 22.			
24.	Turn Off the outpuc completed.	its of signal generators and the audio analyzer when all the measurements are			

Deviation	10 MHz Accuracy	1500 MHz Accuracy	3000 MHz Accuracy	Measurement uncertainty	Effective lower limit	Effective upper limit
2.40484 kHz	%	%	%		-1.14 %	+1.14 %
5.52009 kHz	%	%	%		-0.95 %	+0.95 %
8.6535 kHz	%	%	%	±0.2 %	-0.90 %	+0.90 %
11.7915 kHz	%	%	%		-0.87 %	+0.87 %
14.9301 kHz	%	%	%		-0.86 %	+0.86 %

FM demodulation deviation accuracy of RF analyzer

• Demodulation frequency range: 30 Hz to 20 kHz • Frequency characteristics: ±0.5 dB ence) (2) Test instruments • Synthesized signal generator: MG3633A or the equivalent • Measuring receiver: HP8902A or the equivalent • Mixer (3) Setup 10 MHz Reference Input 10 MHz Buffered Output MG3633A (SG1) MT8801C Synthesized signal generator 0 0 0 0 ñ ----00 ٩ 8 min 0:0:0 0 ōōōōō it's market 10 MHz Buffered Output RF Main Input **RF** Output MIXER 10 MHz Reference Input IF LO HP8902A Measuring receiver 0:0:0 0 ... \square MG3633A (SG2) Synthesized signal generator 10 MHz Buffered Output 10 MHz Reference Input

(1) Specifications

(Demodulation frequency = 1 kHz as refer-

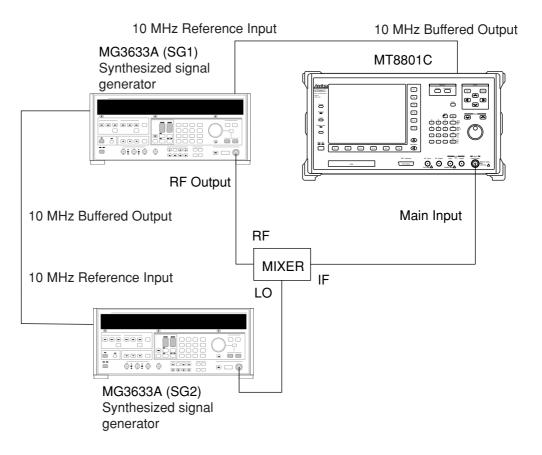
1.					
	Initialize the MT88010	C, the signal generators (SG1 and SG2), and the measuring receiver.			
2.	Set the measuring receiver as follows:				
	Measurement Mode:	FM			
	Detection Mode:	(p_p)/2			
	Range:	Auto			
	Frequency:	500 MHz			
3.	Set the signal generato	r (SG1) as follows and turn On the output:			
	Output Level:	+10 dBm			
	Frequency:	1400 MHz			
	FM:	On			
	Deviation:	4 rad			
	Internal Mod Freq Out	: AF Osc			
4.	Set the signal generato	r (SG2) as follows and turn On the output:			
	Output Level:	+17 dBm			
	Frequency:	900 MHz			
5.	Measure the modulatio	n signal of signal generator by the measuring receiver and obtain the calibrate			
	value (D_{AF}) .				
	(Record all the indicati	on deviation values to be measured.)			
6.	Set the MT8801C as fo	bllows:			
	Set RF Input/Output to	Main on the Instrument Setup screen.			
7.	Turn On the Main Fun	c of MT8801C and press the Analog Tester key (F3).			
8.	Display the TX Measu	re screen of MT8801C to set as follows:			
	[AF Osc. function]				
	AF Osc.1:	Off			
	AF Osc.2:	Off			
	[Deviation function]				
	Demod:	FM			
9.	Set the RF frequencies	for the MT8801C and the signal generator (SG2).			
	RF frequencies of MT8	3801C: 10 MHz 1500 MHz 3000 MHz			
	RF frequencies of SG2	: 1390 MHz 100 MHz 1600 MHz			
10.	Set the measuring AF f	requency for the signal generator and read and record the displayed value whe			
	the MT8801C measure	ment result stabilized. (M_{AF})			
11.	Similarly perform the n	neasurement for all the AF frequencies and obtain the error when 1 kHz is set a			
	the reference by using	the following expression:			
	Error	$(dB) = 20 \text{ Log}_{10} \{ (M_{AF}/M_{1 \text{ kHz}}) / (D_{AF}/D_{1 \text{ kHz}}) \}$			
12.		nt steps 9 to 11 for all the measurement frequencies.			

(4) Test procedure: FM demodulation frequency characteristics

5.3 Performance Tests

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
20 Hz	dB	dB	dB			
400 Hz	dB	dB	dB			
1 kHz	0 dB	0 dB	0 dB	±0.05 dB	-0.45 dB	+0.45 dB
5 kHz	dB	dB	dB	±0.05 dB	-0.45 uD	+0.45 uD
10 kHz	dB	dB	dB			
20 kHz	dB	dB	dB			

FM demodulation frequency characteristics of RF analyzer


5.3.3.6 Demodulation residual FM

(1) Specifications

• Residual FM: 8 Hz rms (demodulation band: 0.3 to 3 kHz)

(2) Test instruments

- Synthesized signal generator: MG3633A or the equivalent
- Mixer
- (3) Setup

(4)	Test pro	ocedure: Demodulati	ion residual FM		
	Step		Procedure		
	1.	Initialize the MT880	1C and the signal generators (SG1 and SG2) (press the Preset key).		
	2.	Set the MT8801C as	follows:		
		Set RF Input/Output	to Main on the Instrument Setup screen.		
	3.	Turn On the Main Fu	inc of MT8801C and press the Analog Tester key (F3).		
	4. Display the TX Measure screen of MT8801C, set as follows, and set the output leve				
		generator as the refer	ence level:		
		[AF Osc. function]			
		AF Osc.1:	Off		
		AF Osc.2:	Off		
		[Deviation function]			
		Demod.:	FM		
		Det Mode:	RMS		
		HPF:	300 Hz		
		LPF:	3 kHz		
	5.	Set the signal generat	tor (SG1) as follows and turn On the output:		
		Output Level:	+10 dBm		
		Frequency:	1400 MHz		
	6.	Set the output level (-	+17 dBm) of signal generator (SG2) and turn On the output.		
	7.	Set the RF frequencie	es for the MT8801C and the signal generator (SG2).		
		RF frequencies of M	T8801C: 10 MHz 1500 MHz 3000 MHz		
		RF frequencies of SC	32: 1390 MHz 100 MHz 1600 MHz		
	8.	After executing "Au	ato Range" of the MT8801C, read the displayed value when the MT8801C		
		measurement result s	stabilized after performing the "Adjust Range", and check whether the result is		
		within the specification	on value.		
	9.	Similarly repeat the r	neasurement steps 7 and 8 for all the measurement frequencies.		

Demodulation residual FM of RF analyzer

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
Residual FM	Hz	Hz	Hz	1.2 Hz	-6.8 Hz	+6.8 Hz

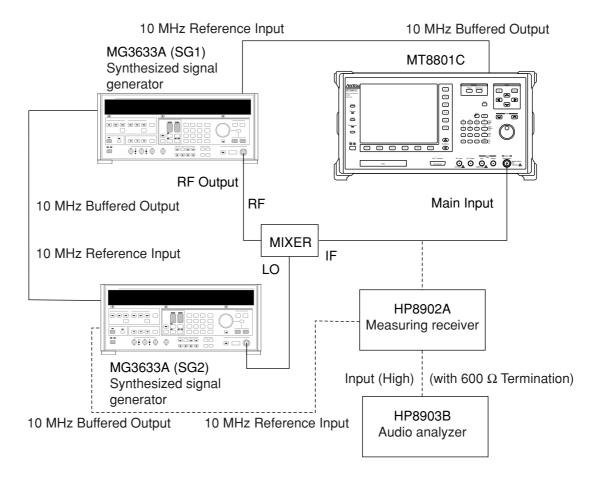
5.3.3.7 FM demodulation distortion

(1) Specifications

Demodulation distortion:
 0.3% (Demodulation frequency: 1 kHz, demodulation band: 0.3 to 3 kHz, frequency deviation: 5 kHz)

(2) Test instruments

- Synthesized signal generator: MG3633A or the equivalent
- Measuring receiver:


• Audio analyzer:

HP8903B or the equivalent

HP8902A or the equivalent

• Mixer

(3) Setup

Step		Procedure				
1.	Initialize the MT8801C analyzer.	, the signal generators (SG1 and SG2), the measuring receiver, and the audio				
2.	Set the measuring recei	ver as follows:				
	Measurement Mode:	FM				
	LPF:	3 kHz				
	HPF:	300 Hz				
	Detection Mode:	(p_p)/2				
	Range:	Auto				
	Frequency:	500 MHz				
3.	Set the audio analyzer a	s follows:				
	Measurement Mode:	Distortion				
	Display:	Log				
	LP Filter:	30 kHz				
	All Plug-In HP/BP Filter:	Off				
4.	Set the signal generator (SG1) as follows and turn On the output:					
	Output Level:	+10 dBm				
	Frequency:	1400 MHz				
	FM:	On				
	Deviation:	5 kHz				
	Internal Mod Freq:	1 kHz				
5.	Set the signal generator	(SG2) as follows and turn On the output:				
	Output Level:	+17 dBm				
	Frequency:	900 MHz				
6.	Read the modulation signal of signal generator by the audio analyzer (the value displayed on the right					
	side).					
7.	Measure the modulation signal of signal generator and check whether the distortion ratio is 0.1% or					
	less.					
8.	Set the MT8801C as fo	llows				
0.		Main on the Instrument Setup screen.				
9.		of MT8801C and press the Analog Tester key (F3).				

(4) Test procedure: FM demodulation distortion

Step			Procedure	e			
10.		Display the TX Measure screen of MT8801C, set as follows, and set the output level of signal generator as the reference level:					
	[AF Osc. function]						
	AF Osc.1:	Off					
	AF Osc.2:	Off					
	[Deviation function]]					
	Demod.:	FM					
	Distortion Unit:	%					
	HPF:	300 Hz					
	LPF:	3 kHz					
11.	Set the RF frequenc	ies for the MT8	3801C and the si	gnal generator	· (SG2).		
	RF frequencies of M	IT8801C:	10 MHz	1500 MHz	3000 MHz		
	RF frequencies of S	G2:	1390 MHz	100 MHz	1600 MHz		
12.	Read the displayed result is within the s			asurement resu	It stabilized and check	whether th	
10	0''''''''''''''''''''''''''''''''''''''		10 / 10 6	11 .1			

13. Similarly repeat the measurement steps 10 to 12 for all the measurement frequencies.

FM demodulation distortion of RF analyzerr

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective upper limit
Distortion	%	%	%	0.12 %	0.18 %

5.3.3.8 ØM demodulation deviation accuracy

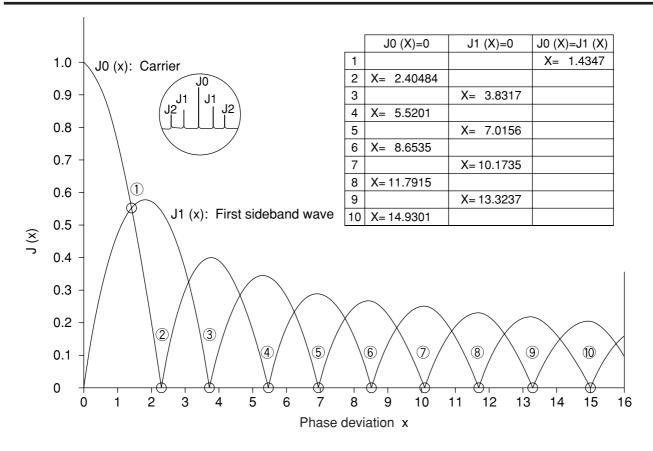
(1) Specifications

• 1% of indication value + residual øM (Demodulation frequency: 1 kHz)

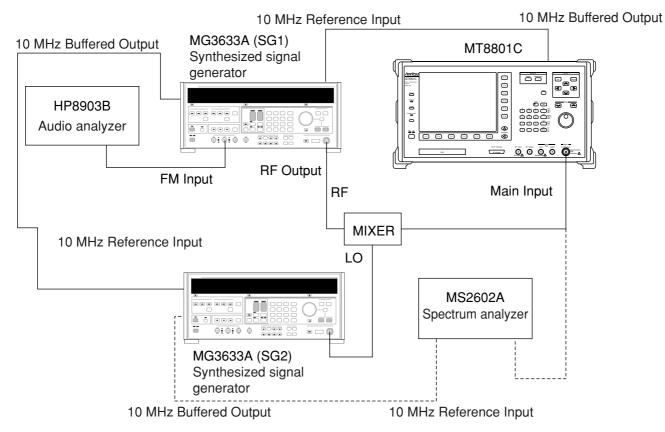
(2) Test instruments

- Synthesized signal generator: MG3633A or the equivalent
- Audio analyzer: HP8903A or the equivalent
- Spectrum analyzer: MS2602A or the equivalent
- Mixer

(3) Notes on test


Calibrating øM deviation of signal generator

The figure below shows the relationship among phase deviation x, carrier element J0 (x) and first sideband wave element J1 (x) of the ϕ M-modulated signal. The table below lists the residuals of the carrier erasing elements and calibration accuracies of the FM deviations at this time.


øM deviations to be calibrated for J0 (x)=0 (CW=0) counts and calibration accuracies

J0 (x)=0 (CW=0) count and øM deviation to	Erasing element residual						
be calibrated	Calibration accuracy = $\pm 0.2\%$	Calibration accuracy = $\pm 0.5\%$	Calibration accuracy = $\pm 1\%$				
CW=0 (1st time)	-52 dB	-43.6 dB	-38.1 dB				
2.40484 rad	(0.00250)	(0.00663)	(0.0124)				
CW=0 (2nd time)	-48.6 dB	-40.6 dB	-34.6 dB				
5.52009 rad	(0.00374)	(0.00937)	(0.0187)				
CW=0 (3rd time)	-46.6 dB	-38.6 dB	-32.7 dB				
8.6535 rad	(0.00468)	(0.0117)	(0.0233)				

(4) Setup

Step		Procedure						
Preparation	before measurement (pre	e-calibration)						
1.	Initialize the signal g	enerators (SG1 and SG2), the audio analyzer, and the spectrum analyzer.						
2.	Set the signal generat	tor (SG1) as follows and turn On the output:						
	Output Level:	+10 dBm						
	Frequency:	1400 MHz						
	øM:	External AC						
	Deviation:	5 kHz						
	Internal Mod Freq:	1 kHz						
3.	Set the signal generat	tor (SG2) as follows and turn On the output:						
	Output Level:	+17 dBm						
	Frequency:	900 MHz						
4.	Set the audio analyze	er as follows:						
	Frequency:	1 kHz						
	Level:	0 V						
5.	Set the spectrum anal	lyzer as follows:						
	Frequency:	500 MHz						
	Ref Level:	0 dBm						
	Span:	100 Hz						
6.	Execute "Peak to Ref	" and "Peak to CF" using the spectrum analyzer after the above setting and record						
	the peak level at this	time.						
7.	Set "Zone Width: 2 I	Div" of the spectrum analyzer to be in the "Zone Sweep" mode.						
8.	Gradually increase th	et "Zone Width: 2 Div" of the spectrum analyzer to be in the "Zone Sweep" mode. radually increase the output level of audio analyzer and monitor the point (DEV1) where the peak						
	level becomes smalle	est by using the spectrum analyzer.						
9.	Compare the SPA rea	ad value at the smallest level with the level recorded in the step 6, check whethe						
	the level difference is	52 dB or larger, and record the output level of audio analyzer (SET1) at this time						
10.	Similarly monitor th	e points where the level drops to the second and the third by using the audio						
	analyzer, check whe	ther each of level differences is "48.6 dB or 46.6 dB" or larger, and record the						
	output levels of audio	o analyzer (SETn).						
11.	Turn Off the audio ar	nalyzer and the signal generators (SG1 and SG2) to complete the pre-calibration						
	nt (performance test)							
12.	Initialize the MT880	1C, the signal generators (SG1 and SG2), and the audio analyzer.						
13.	Set the MT8801C as	follows:						
		to Main on the Instrument Setup screen.						
	Set TX Frequency Re	ef Level to 0 dBm on the Setup Common Parameter screen.						
14.	Turn On the Main Fu	inc of MT8801C and press the Analog Tester key (F3).						

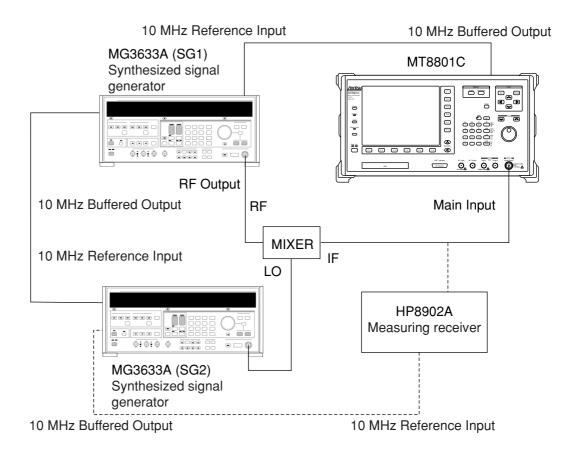
(5) Test procedure: øM demodulation deviation accuracy

Step		Procedure				
15.	Display the TX Measure screen on the MT8801C and set as follows:					
	[AF Osc. function]					
	AF OSC.1:	Off				
	AF OSC.2:	Off				
	[Deviation function]					
	Demod. :	øM				
	HPF:	300 Hz				
	LPF:	3 kHz				
	Det Mode:	(p_p)/2				
16.	Set the signal generator	(SG1) as follows and turn On the output:				
	Output Level:	+10.0 dBm				
	Frequency:	1400 MHz				
	FM:	External AC				
	Deviation:	5 kHz				
17.		(SG2) as follows and turn On the output:				
	Output Level:	–17.0 dBm				
18.	Set the audio analyzer a	as follows:				
	Frequency:	1 kHz				
	Level:	0 V				
19.	Set the RF frequencies	for the MT8801C and the signal generator (SG2).				
	RF frequencies of MT8					
	RF frequencies of SG2	: 1390 MHz 100 MHz 1600 MHz				
20.	Set one of the pre-calib	rated levels (SETn) for the audio analyzer.				
21.	Read the measurement	result after the "Adjust Range" of MT8801C, compare it with each expected				
	value of vessel points, a	and check whether it is within the specification value.				
22.	Change the audio analy	zer setting and repeat the step 21.				
23.	Change the RF frequen	cy and repeat the above measurement steps 20 to 22.				
24.	Turn Off the outputs of	of signal generators and the audio analyzer when all the measurements are				

\square	10 N	ЛНz	1500	MHz	3000	MHz	Measurement	Effective	Effective
	Calibrated value	Accuracy	Calibrated value	Accuracy	Calibrated value	Accuracy	uncertainty	lower limit	upper limit
2.40484 rad	%	%	%	%	%	%		-1.22 %	+1.22 %
5.52009 rad	%	%	%	%	%	%	±0.2 %	-0.99 %	+0.99 %
8.6535 rad	%	%	%	%	%	%		-0.92 %	+0.92 %

øM demodulation deviation accuracy of RF analyzer

5.3.3.9 øM frequency characteristics


(1) Specifications

• ± 0.5 dB (Demodulation frequency = 1 kHz as reference)

(2) Test instruments

- Synthesized signal generator: MG3633A or the equivalent
- Measuring receiver: HP8902A or the equivalent
- Mixer

(3) Setup

Step		Procedure				
1.	Initialize the MT88010	C, the signal generators (SG1 and SG2), and the measuring receiver.				
2.	Set the measuring rece	eiver as follows:				
	Measuring Mode:	øM				
	Detection Mode:	(p_p)/2				
	Range:	Auto				
	Frequency:	500 MHz				
3.	Set the signal generato	or (SG1) as follows and turn On the output:				
	Output Level:	+10 dBm				
	Frequency:	1400 MHz				
	øM:	On				
	Deviation:	4 rad				
	Internal Mod Freq Out	t: AF Osc				
4.	Set the signal generato	or (SG2) as follows and turn On the output:				
	Output Level:	+17 dBm				
	Frequency:	900 MHz				
5.	Measure the modulation signal of signal generator by the measuring receiver and obtain the calibrate					
	value (D _{AF}).					
	(Record all the indicat	ion values of deviation to be measured.)				
6.	Set the MT8801C as fo	ollows:				
	Set RF Input/Output to	Main on the Instrument Setup screen.				
7.	Turn On the Main Func of MT8801C, press the Analog Tester key (F3), and set as follows:					
	Set the TX Power Met	er Range to +10 dBm on the Setup Common Parameter screen.				
8.	Display the TX Measure screen of MT8801C to set as follows:					
	[AF Osc. function]					
	AF Osc.1:	Off				
	AF Osc.2:	Off				
	[Deviation function]					
	Demod.:	øM				
9.	Set the RF frequencies	s for the MT8801C and the signal generator (SG2).				
	RF frequencies of MT	8801C: 10 MHz 1500 MHz 3000 MHz				
	RF frequencies of SG2	2: 1390 MHz 100 MHz 1600 MHz				
10.	Read the "Deviation" i	indication value of MT8801C when changing AF. Calculate the deviation when				
		ce to check whether it meets the specifications.				
		Error (dB) = $20 \text{Log}_{10} \{ (M_{AF}/M_{1 \text{ kHz}})/(D_{AF}/D_{1 \text{ kHz}}) \}$				
11.	Depent the above mean	surement step 10 for every measurement frequencies.				

(4) Test procedure: øM frequency characteristics

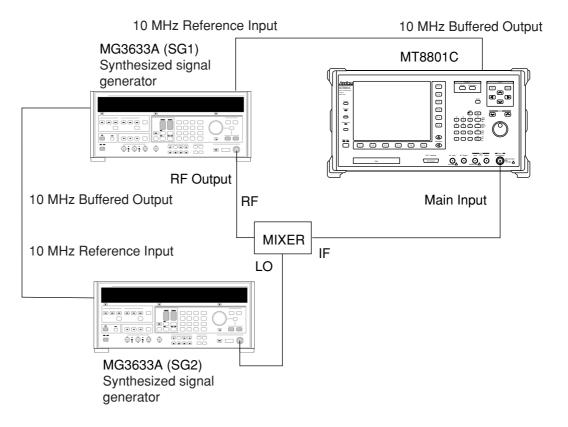
5.3 Performance Tests

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
300 Hz	dB	dB	dB			
1 kHz	dB	dB	dB	±0.05 dB	-0.45 dB	+0.45 dB
2 kHz	dB	dB	dB			
3 kHz	dB	dB	dB			

øM frequency characteristics of RF analyzer

5.3.3.10 Demodulation residual øM

(1) Specifications


• Residual øM: 0.01 rad rms (demodulation band: 0.3 to 3 kHz)

(2) Test instruments

- Synthesized signal generator: M
- MG3633A or the equivalent

• Mixer

(3) Setup

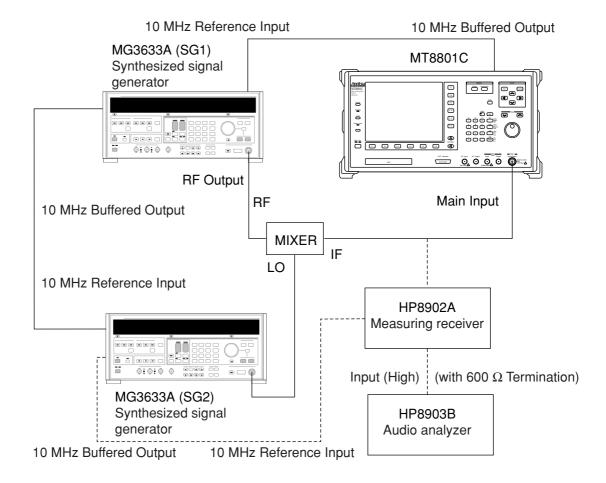
Step		Procedure					
1.	Initialize the MT880	Initialize the MT8801C and the signal generators (SG1 and SG2) (press the Preset key).					
2.	Set the MT8801C as	Set the MT8801C as follows:					
	Set RF Input/Output	t to Main on the Instrument Setup screen.					
3.	Turn On the Main F	func of MT8801C and press the Analog Tester key (F3).					
4.	Display the TX Me	easure screen of MT8801C, set as follows, and set the output level of s	igna				
	generator as the refe	-	C				
	[AF Osc. function]						
	AF Osc.1:	Off					
	AF Osc.2:	Off					
	[Deviation function]						
	Demod. :	øM					
	Det Mode:	RMS					
	HPF:	300 Hz					
	LPF:	3 kHz					
5.	Set the signal generator (SG1) as follows and turn On the output:						
	Output Level:	+10 dBm					
	Frequency:	1400 MHz					
6.	Set the output level	(+17 dBm) of signal generator (SG2) and turn On the output.					
7.	Set the RF frequenc	ies for the MT8801C and the signal generator (SG2).					
	RF frequencies of M	IT8801C: 10 MHz 1500 MHz 3000 MHz					
	RF frequencies of S	G2: 1390 MHz 100 MHz 1600 MHz					
8.	Read the displayed	value when the MT8801C measurement result stabilized and check whether	er th				
	result is within the s	pecification value.					
9.	Similarly repeat the	measurement steps 7 and 8 for all the measurement frequencies.					

Demodulation	residual ø	M of RF	analyzer
--------------	------------	---------	----------

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective upper limit
Residual FM	rad	rad	rad	0.0012 rad	0.0088 rad

5.3.3.11 øM demodulation distortion

(1) Specifications


Demodulation distortion: 0.5%
 (Demodulation frequency: 1 kHz, demodulation band: 0.3 to 3 kHz, frequency deviation: 5 rad)

HP8902A or the equivalent

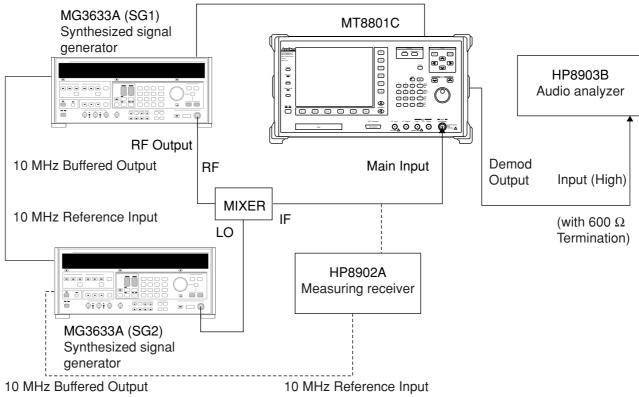
(2) Test instruments

- Synthesized signal generator: MG3633A or the equivalent
- Measuring receiver:
- Audio analyzer: HP8903B or the equivalent
- Mixer

(3) Setup

Step	Procedure				
1.	Initialize the MT8801C, the signal generators (SG1 and SG2), the measuring receiver, and the audio analyzer.				
2.	Set the measuring receiver as follows:				
	Measurement Mode:	øM			
	LPF:	3 kHz			
	HPF:	300 Hz			
	Detection Mode:	(p_p)/2			
	Range:	Auto			
	Frequency:	500 MHz			
3.	Set the audio analyzer	as follows:			
	Measurement Mode:	Distortion			
	Display:	Log			
	LP Filter:	30 kHz			
	All Plug-In HP/BP Filter:	Off			
4.	Set the signal generator (SG1) as follows and turn On the output:				
	Output Level:	+10 dBm			
	Frequency:	1400 MHz			
	øM:	On			
	Deviation:	5 rad			
	Internal Mod Freq:	1 kHz			
5.	Set the signal generator	r (SG2) as follows and turn On the output:			
	Output Level:	+17 dBm			
	Frequency:	900 MHz			
6.	Read the modulation si	gnal of signal generator by the audio analyzer (the value displayed on the righ			
	side).				
7.	Measure the modulation signal of signal generator and check whether the distortion ratio is 0.1% or				
	less.				
8.	Set the MT8801C as fo	llows:			
0.		Main on the Instrument Setup screen.			
9.		c of MT8801C and press the Analog Tester key (F3).			

(4) Test procedure: øM demodulation distortion


Step	Procedure					
10.	Display the TX Me generator as the refe		of MT88	01C, set as fo	ollows, and set the output level of signa	
	[AF Osc. function]					
	AF Osc.1:	Off				
	AF Osc.2:	Off				
	[Deviation function]					
	Demod. :	øM				
	Distortion Unit:	%				
	HPF:	300 Hz				
	LPF:	3 kHz				
11.	Set the RF frequence	ies for the MT8	8801C and	d the signal ge	nerator (SG2).	
	RF frequencies of M	TT8801C: 10	MHz	1500 MHz	3000 MHz	
	RF frequencies of S	G2: 139	90 MHz	100 MHz	1600 MHz	
12.	Read the displayed result is within the s			1C measureme	ent result stabilized and check whether th	

13. Similarly repeat the measurement steps 10 to 12 for all the measurement frequencies.

øM demodulation distortion of RF analyzer

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective upper limit
Distortion	%	%	%	< 0.12 %	0.38 %

5.3.3.12 FM demodulation output frequency characteristic (1) Specifications • Demodulation frequency range: 50 Hz to 10 kHz • Frequency characteristics: ±1 dB (demodulation frequency: 1 kHz) (2) Test instruments • Synthesized signal generator: MG3633A or the equivalent • Measuring receiver: HP8902A or the equivalent HP8903B or the equivalent • Audio analyzer: • Mixer (3) Setup 10 MHz Reference Input 10 MHz Buffered Output MG3633A (SG1) MT8801C Synthesized signal

Step		Procedure			
1.	Initialize the MT8801C, the signal generators (SG1 and SG2), the measuring receiver, and the audio analyzer.				
2.	Set the measuring rece	viver as follows:			
	Measurement Mode:	FM			
	Detection Mode:	(p_p)/2			
	Frequency:	500 MHz			
3.	Set the signal generato	or (SG1) as follows and turn On the output:			
	Output Level:	+10 dBm			
	Frequency:	1400 MHz			
	FM:	On			
	Internal Mod Freq Out	: AF			
	Deviation:	4 kHz			
4.	Set the signal generato	or (SG2) as follows and turn On the output:			
	Output Level:	+17 dBm			
	Frequency:	900 MHz			
5.	Measure the modulation	n signal of signal generator by the audio analyzer and obtain the calibrated value (D)			
	(Record all the indication values of deviation to be measured.)				
6.	Set the MT8801C as fo	ollows:			
	Set RF Input/Output to	Main on the Instrument Setup screen.			
7.	Turn On the Main Fun	c of MT8801C and press the Analog Tester key (F3).			
8.	Set the output level of	signal generator (SG1) to the reference level of MT8801C.			
9.	Set the MT8801C as fo	ollows:			
	HPF:	Off Set it on the Setup TX Measure Parameter screen.			
	LPF:	Off Set it on the Setup TX Measure Parameter screen.			
	De-enphasis:	Off Set it on the Setup TX Measure Parameter screen.			
10.	Display the TX Measu	re screen of MT8801C and set as follows:			
	[AF Osc. function]				
	AF Osc.1:	Off			
	AF Osc.2:	Off			
11.	Set the audio analyzer	as follows:			
	Measurement Mode:	AC Level			
	LP Filter:	30 kHz			
	Scale:	Log			
12.	Set "Range: 4 kHz" or Measure screen.	n the Setup TX Measure Parameter screen of MT8801C and switch to the TX			
13.	Set the RF frequencies	for the MT8801C and the signal generator (SG2).			
	RF frequencies of MT				
	RF frequencies of SG2				

(4) Test procedure: FM demodulation output frequency characteristics

Step	Procedure
14.	Set the measuring AF frequency for the signal generator.
15.	Check the measurement result of the audio analyzer to be stabilized and record it.
16.	Similarly perform the measurement for all the AF frequencies and obtain the error when 1 kHz is set a reference.
	Error (dB) = $20Log_{10} \{ (V_{AF}/V_{1 \text{ kHz}})/(D_{AF}/D_{1 \text{ kHz}}) \}$
17.	Repeat the measurement steps 14 to 16 for all the measurement frequencies.
18.	Change the deviation of signal generator (SG1) and the MT8801C measurement range to 40 kHz Repeat the above measurement steps 13 to 17.

FM demodulation output frequency characteristics of RF analyzer

Range: 4 kHz

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
50 Hz	dB	dB	dB			
400 Hz	dB	dB	dB			
1 kHz	dB	dB	dB	±0.18	-0.82	+0.82
5 kHz	dB	dB	dB			
10 kHz	dB	dB	dB			

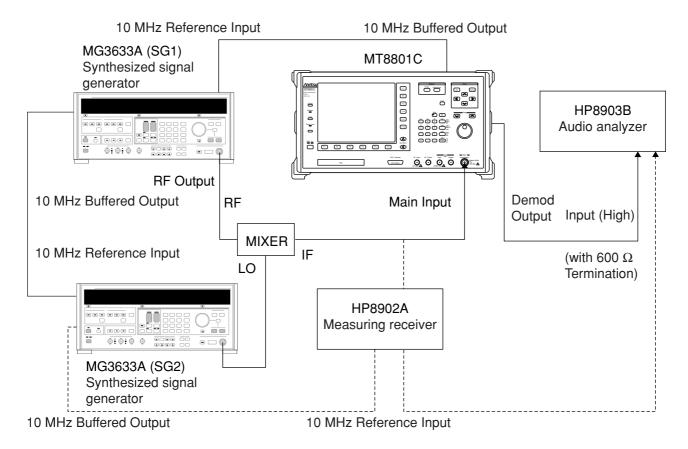
Range: 40 kHz

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
50 Hz	dB	dB	dB			
400 Hz	dB	dB	dB			
1 kHz	dB	dB	dB	±0.18	-0.82	+0.82
5 kHz	dB	dB	dB			
10 kHz	dB	dB	dB			

5.3.3.13 FM demodulation output distortion

(1) Specifications

- Demodulation distortion: 1%


(Demodulation frequency: 1 kHz, demodulation band: 0.3 to 3 kHz, frequency deviation: 4 kHz, 4 kHz range)

HP8902A or the equivalent

(2) Test instruments

- Synthesized signal generator: MG3633A or the equivalent
- Measuring receiver:
- Audio analyzer: HP8903B or the equivalent
- Mixer

(3) Setup

Step		Procedure			
1.	Initialize the MT88010 analyzer.	C, the signal generators (SG1 and SG2), the measuring receiver, and the audio			
2.	Set the measuring rece	iver as follows:			
	Measurement Mode:	FM			
	LPF:	3 kHz			
	HPF:	300 Hz			
	Detection Mode:	$(p_p)/2$			
	Range:	Auto			
	Freqiency:	500 MHz			
3.	Set the signal generato	r (SG1) as follows and turn On the output:			
	Output Level:	+10 dBm			
	Frequency:	1400 MHz			
	FM:	On			
	Deviation:	4 kHz			
4.	Set the signal generato	r (SG2) as follows and turn On the output:			
	Output Level:	+17 dBm			
	Frequency:	900 MHz			
5.	Measure the modulation signal of signal generator by the audio analyzer, and confirm that the				
	distortion ratio is less t				
	(Record all the indicati	ion values of deviation to be measured.)			
6.	Set the MT8801C as fo	bllows:			
	Set RF Input/Output to	Main on the Instrument Setup screen.			
7.	Turn On the Main Fun	c of MT8801C and press the Analog Tester key (F3).			
8.		signal generator (SG1) to the reference level of MT8801C.			
9.	Set the MT8801C as fo				
9.	Range:	4 kHz Set it on the Setup TX Measure Parameter screen.			
	HPF:	300 HzSet it on the Setup TX Measure Parameter screen.			
	LPF:	3 kHz Set it on the Setup TX Measure Parameter screen.			
10.		re screen of MT8801C and set as follows:			
10.		te serven of W118801C and set as follows.			
	[AF Osc. function]				
	AF Osc.1:	Off Off			
	AF Osc.2:	Off			
11.	Set the audio analyzer				
	Measurement Mode:	Distortion			
	LPF:	30 kHz			
	Scale:	Linear			
12.	-	for the MT8801C and the signal generator (SG2).			
	RF frequencies of MT				
	RF frequencies of SG2	2: 1390 MHz 100 MHz 1600 MHz			

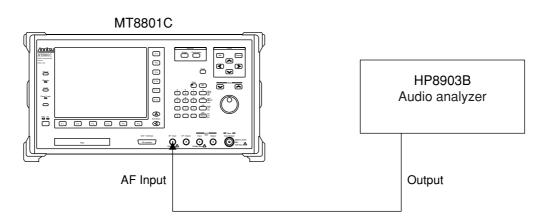
(4) Test procedure: FM demodulation output distortion

Step	Procedure
13.	Check the measurement result of the audio analyzer to be stabilized. Read the displayed value to check
	whether it is within the specification value.
14.	Repeat the above measurement steps 12 and 13 for all the measurement frequencies.

FM demodulation output distortion of RF analyzer

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
Distortion	%	%	%	< 0.17 %	-0.83 %	+0.83 %

5.3.4 Audio analyzer


5.3.4.1 AF level measurement accuracy

(1) Specifications

- Frequency range: 30 Hz to 20 kHz
- Input level range: 1 mV rms to 30 V rms
- Accuracy: ±0.5 dB

(2) Test instruments

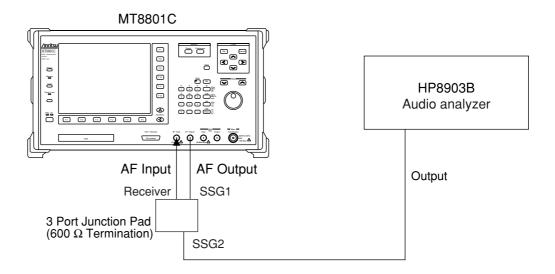
- Audio analyzer: HP8903B or the equivalent
- (3) Setup

Step Procedure						
1.	Return and connect the output level of audio analyzer to the audio analyzer for the calibration.					
2.	Initialize the MT8801C and the audio analyzer (press the Preset key).					
3.	Turn On the Main Func of MT8801C and press the Analog Tester key (F3).					
4.	Set the MT8801C as follows: AF level input Impedance: 100 kΩ					
5.	Display the AF Measure screen of MT8801C.					
	[AF Osc. function]AF Osc.1:OffAF Osc.2:Off					
6.	Set the AF frequency to be measured for the audio analyzer.					
7.	Select the range appropriate for the measurement range on the Setup Common Parameter screen of MT8801C and then switch to the AF Measure screen.					
8.	Set the level to be measured for the audio analyzer.					
9.	Measure the AF level after the "Measure Single" sweep of MT8801C and obtain the measuremen accuracy using the following expression to determine whether it meets the specification:					
	Accuracy (dB) = 20 Log 10 (MT8801C measurement result/Calibrated value of the audio analyzer)					
10.	Change the measurement level and repeat the measurement steps 7 to 9.					
11.	Repeat the steps 6 to 10 for all the measurement frequencies.					

AF level measurement accuracy of audio analyzer

	1 mV	40 mV	400 mV	1 V	4 V	5 V
30 Hz	dB	dB	dB	dB	dB	dB
400 Hz	dB	dB	dB	dB	dB	dB
1 kHz	dB	dB	dB	dB	dB	dB
5 kHz	dB	dB	dB	dB	dB	dB
10 kHz	dB	dB	dB	dB	dB	dB
20 kHz	dB	dB	dB	dB	dB	dB
Measurement uncertainty	±0.43 dB	±0.26 dB ±0.18 dB				
Effective lower limit	-0.07 dB	-0.24 dB		-0.3	2 dB	
Effective upper limit	+0.07 dB	+0.24 dB	+0.32 dB			

5.3.4.2 Distortion rate measurement accuracy


(1) Specifications

- Frequency range: 100 Hz to 5 kHz
- Input level range: 30 mV rms to 30 V rms
- Accuracy: ±1 dB (frequency: 1 kHz, distortion rate: 1%)

(2) Test instruments

- Audio analyzer: HP8903B or the equivalent
- 3-Port junction pad

(3) Setup

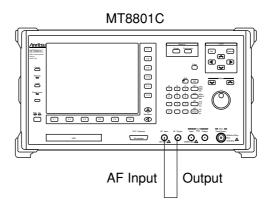
Step	Procedure							
1.	Initialize the MT8801C and the audio analyzer (press the Preset key).							
2.	Turn On the Main Func of MT8801C and press the Analog Tester key (F3).							
3.	Set the MT8801C as shown below. Display the AF Measure screen.							
	AF level input Rang	ge: 4 V Set it on the Setup Common Parameter screen.						
	AF level input Impedance: $100 \text{ k}\Omega$ Set it on the Setup Common Parameter screen.							
4.	Display the AF Measure screen of MT8801C to set as follows:							
	[AF Osc. function]							
	AF Osc.1:	Off						
	AF Osc.2:	Off						
	[Deviation function]						
	HPF:	300 Hz						
	LPF:	3 kHz						
	Distortion Unit:	dB						
5.	Set the audio analyzer as follows:							
	Frequency:	1 kHz						
	Level:	5 V						
6.	Set "Frequency: 2 kHz" for the AF OSC.2 of MT8801C.							
7.	Read the signal level of audio analyzer alone displayed on the MT8801C, fine adjust the level of audio analyzer so that the measurement value becomes $2.5 \text{ V} \pm 1\%$, and then record the set value and the measured value at this time.							
8.								
	Turn Off the output of audio analyzer and set the AF OSC.2 of MT8801C to On.							
9.		MT8801C at 1/100 level set for the audio analyzer and fine adjust the AF OSC. T8801C measurement value becomes 1/100 of the measurement result of audi						
10.	Set the recorded level to the audio analyzer.							
11.		nent result of distortion after the "Measure Single" sweep of MT8801C and obtain the following expression to determine whether it meets the specification:						
	Accuracy ((dB) = Distortion measurement result + 40 " Distortion ratio 1% = -40 dB						

Be careful the measurement is not normally performed when the option of low impedance a input (output?) is implemented in the MT8801C without performing the impedance conversion using the jig.

Distortion rate measurement accuracy of audio analyzer

	2.5 V	Measurement uncertainty	Effective lower limit	Effective upper limit
1 kHz	dB	±0.76 dB	-0.24 dB	+0.24 dB

5.3.4.3 Frequency measurement accuracy


(1) Specifications

• Accuracy: ±0.1 Hz

(2) Test instruments

• Frequency counter: MF1603A or the equivalent (required for AF output calibration of MT8801C)

(3) Setup

Section 5 Peformance Tests

Step		P	rocedure							
1.	Calibrate (measure) the A	Calibrate (measure) the AF output of MT8801C by using the MF1603A.								
2.	Initialize the MT8801C (press the Preset I	key).							
3.	Turn On the Main Func of	of MT8801C and	press the Analog Tester key (F3).							
4.	Set the MT8801C as follo	ows:								
	AF level input Range:	40 mV	Set it on the Setup Common Parameter screen.							
	AF level input Impedance	e: $100 \text{ k}\Omega$	Set it on the Setup Common Parameter screen.							
5.	5. Display the AF Measure screen of MT8801C to set as follows:									
	[AF Osc. function]									
	AF Osc.1:	On								
	AF Osc.2:	Off								
	[AF Level function]									
	Level:	30 mV								
	Filter:	Off								
	[Deviation function]									
	HPF:	Off								
	LPF:	Off								
6.	Set the measurement free	uency for "AF (Osc.1", read the measurement result after "Measu							

- Set the measurement frequency for "AF Osc.1", read the measurement result after "Measure Single", 6. and calculate the difference from the measurement result of frequency counter at the frequency calibration to determine whether it meets the specification.
- 7. Repeat the above measurement step 6 for every measurement frequencies.

	0.3 mV	30 mV	3 V	30 V	Measurement uncertainty	Effective lower limit	Effective upper limit
30 Hz	dB	dB	dB	dB		–0.099 Hz	+0.099 Hz
100 Hz	dB	dB	dB	dB	< ±1 mHz	–0.099 Hz	+0.099 Hz
1 kHz	dB	dB	dB	dB	$\leq \pm 1 \text{ IIIHZ}$	–0.099 Hz	+0.099 Hz
20 kHz	dB	dB	dB	dB		–0.099 Hz	+0.099 Hz

Frequency measurement accuracy of audio analyzer

Note:

The setup shown in (3) above cannot perform the "30 V" measurement. When it is required; prepare a amplifier to amplify the signal generator output level, or a signal generator which can output the 30 V output level.

5.3.5 Example of performance test result entry sheet

This paragraph gives an example of sheets used to summarize the results of a performance test on analog measurement of MT8801C.

Use a copy of this sheet for the performance test.

Signal generator

Output level accuracy measurement [AUX side] (Error dB)

	-	10.01 MHz	2		800.01 MH	lz		1900.01 N	1Hz		2999.99 N	ИНz	Magauramaat
	Effective	Measured	Effective	Measurement									
	lower limit	value	upper limit	uncertainty									
+ 7.0 dBm		dB			dB			dB			dB		
+ 6.0 dBm		dB			dB			dB			dB		
+ 5.0 dBm		dB			dB			dB			dB		
+ 4.0 dBm		dB			dB			dB			dB		
+ 3.0 dBm		dB			dB			dB			dB		
+ 2.0 dBm		dB			dB			dB			dB		
+ 1.0 dBm		dB			dB			dB			dB		
0.0 dBm		dB			dB			dB			dB		
-1.0 dBm		dB			dB			dB			dB		
-2.0 dBm		dB			dB			dB			dB		
–3.0 dBm	-0.76 dB	dB	+0.76 dB	–0.76 dB	dB	+0.76 dB	-0.76 dB	dB	+0.76 dB	-1.76 dB	dB	+1.76 dB	±0.24 dB
-13.0 dBm		dB			dB			dB			dB		
–23.0 dBm		dB			dB			dB			dB		
-33.0 dBm		dB			dB			dB			dB		
-43.0 dBm		dB			dB			dB			dB		
–53.0 dBm		dB			dB			dB			dB		
-63.0 dBm		dB			dB			dB			dB		
-73.0 dBm		dB			dB			dB			dB		
-83.0 dBm		dB			dB			dB			dB		
–93.0 dBm		dB			dB			dB			dB		
-103.0 dBm		dB			dB			dB			dB		
-113.0 dBm	-0.53 dB	dB	+0.53 dB	-0.53 dB	dB	+0.53 dB	-0.53 dB	dB	+0.53 dB	-1.53 dB	dB	+1.53 dB	
-123.0 dBm	-0.55 UB	dB	+0.55 dB	-0.55 uB	dB	+0.55 UB	-0.55 uB	dB	+0.55 uB	-1.55 UB	dB	+1.55 UB	±0.47 dB
-133.0 dBm	-2.53 dB	dB	+2.53 dB	-2.53 dB	dB	+2.53 dB	-2.53 dB	dB	+2.53 dB	-3.53 dB	dB	+3.53 dB	

Section 5 Peformance Tests

[Main side] (Error dB)

\smallsetminus		10.01 MHz	2	-	800.01 MF	łz		1900.01 N	IHz		2999.99 N	ИНz	
	Effective	Measured	Effective	Effective	Measured	Effective	Effective	Measured	Effective	Effective	Measured	Effective	Measurement
	lower limit	value	upper limit	lower limit	value	upper limit	lower limit	value	upper limit	lower limit	value	upper limit	uncertainty
-18.0 dBm		dB			dB			dB			dB		
-19.0 dBm		dB			dB			dB			dB		
_20.0 dBm		dB			dB			dB			dB		
– 21.0 dBm		dB			dB			dB			dB		
– 22.0 dBm		dB			dB			dB			dB		
– 23.0 dBm		dB			dB			dB			dB		
– 24.0 dBm		dB			dB			dB			dB		
– 25.0 dBm		dB			dB			dB			dB		
– 26.0 dBm	-0.84 dB	dB	+0.84 dB	-0.84 dB	dB	+0.84dB	-0.84 dB	dB	+0.84 dB	-1.84 dB	dB	+1.84 dB	+0.16 dB
– 27.0 dBm	-0.04 dD	dB	10.04 0D	-0.04 uD	dB	10.040D	-0.04 uD	dB	10.04 ub	-1.04 uD	dB	11.04 UD	±0.10 db
– 28.0 dBm		dB			dB			dB			dB		
- 33.0 dBm		dB			dB			dB			dB		
– 43.0 dBm		dB			dB			dB			dB		
– 53.0 dBm		dB			dB			dB			dB		
- 63.0 dBm		dB			dB			dB			dB		
– 73.0 dBm		dB			dB			dB			dB		
– 83.0 dBm		dB			dB			dB			dB		
– 93.0 dBm		dB			dB			dB			dB		
- 103.0 dBm	-0.83 dB	dB	+0.83 dB	-0.83 dB	dB	+0.83 dB	-0.83 dB	dB	+0.83 dB	-1.83 dB	dB	+1.83 dB	±0.17 dB
- 113.0 dBm	–0.57 dB	dB	+0.57 dB	–0.57 dB	dB	+0.57 dB	–0.57 dB	dB	+0.57 dB	–0.57 dB	dB	+1.57 dB	
– 123.0 dBm	, ub	dB			dB	· · · · · · · · · · · · · · · · · · ·		dB	· · · · · · · ·		dB		±0.43 dB
– 133.0 dBm	-2.57 dB	dB	+2.57 dB	-2.57 dB	dB	+2.57 dB	-2.57 dB	dB	+2.57 dB	-3.57 dB	dB	+3.57 dB	

Spurious measurement

		Frequency	Measured value	Effective upper limit	Measurement uncertainty	
Condition 1	The worst value	MHz	dBc	-52.2 dBc	2.2 dB	
Condition 2	The worst value	MHz	dBc	-42.2 dBc	2.2 dB	

Harmonics measurement

	Frequency	Measured value	Effective upper limit	Measurement uncertainty	
The worst value	MHz	dBc	-27.2 dBc	2.2 dB	

FM deviation accuracy

Асси	uracy	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
	500 Hz	%	%	%		-6.3 %	+6.3 %
0501	1 kHz	%	%	%		-5.4 %	+5.4 %
OSC.1	10 kHz	%	%	%		-4.6 %	+4.6 %
	40 kHz	%	%	%	±0.5 %	-4.5 %	+4.5 %
	500 Hz	%	%	%	10.5 %	-6.3 %	+6.3 %
050.2	1 kHz	%	%	%		-5.4 %	+5.4 %
OSC.2	10 kHz	%	%	%		-4.6 %	+4.6 %
	40 kHz	%	%	%		-4.5 %	+4.5 %

5.3 Performance Tests

	uency teristics	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit				
	20 Hz	dB	dB	dB		-0.83 dB	+0.83 dB				
	300 Hz	dB	dB	dB		–0.33 dB	+0.33 dB				
OSC.1	1 kHz	0 dB	0 dB	0 dB		—	—				
	3 kHz	dB	dB	dB		–0.33 dB	+0.33 dB				
	20 kHz	dB	dB	dB	±0.17	-0.83 dB	+0.83 dB				
	20 Hz	dB	dB	dB	±0.17	-0.83 dB	+0.83 dB				
	300 Hz	dB	dB	dB		-0.33 dB	+0.33 dB				
OSC.2	1 kHz	0 dB	0 dB	0 dB		_	_				
	3 kHz	dB	dB	dB		-0.33 dB	+0.33 dB				
	20 kHz		dB	dB		-0.83 dB	+0.83 dB				

FM frequency characteristics

FM distortion

	Frequency characteristics		1300 MHz	3000 MHz	Measurement uncertainty	Effective upper limit
OSC.1	1 kHz	dB	dB	dB	±1.6 dB	-51.6 dB
OSC.2	1 kHz	dB	dB	dB	±1.0 dD	51.0 UD

AF oscillator

Frequency accuracy measurement

Frequency accuracy	Measured value	Error	Measurement uncertainty
20 Hz	Hz	Hz	
1 kHz	Hz	Hz	. 1 1 II
10 kHz	Hz	Hz	<±1 mHz
20 kHz	Hz	Hz	

Output level accuracy

			20 Hz			1 kHz			10 kHz			20 kHz		
Level accuracy	AF Level	Effective lower limit	Measured value	Effective upper limit			Effective upper limit			Effective upper limit		Measured value		Measurement uncertainty
	3 V	-0.83	dB	+0.83	-0.33	dB	+0.33	-0.83	dB	+0.83	-0.83	dB	+0.83	±0.17 dB
Osc.1	1 V	-0.83	dB	+0.83	-0.33	dB	+0.33	-0.83	dB	+0.83	-0.83	dB	+0.83	±0.17 dB
	1 mV	-0.66	dB	+0.66	-0.17	dB	+0.17	-0.66	dB	+0.66	-0.66	dB	+0.66	±0.34 dB
	3 V	-0.83	dB	+0.83	-0.33	dB	+0.33	-0.83	dB	+0.83	-0.83	dB	+0.83	±0.17 dB
Osc.2	1 V	-0.83	dB	+0.83	-0.33	dB	+0.33	-0.83	dB	+0.83	-0.83	dB	+0.83	±0.17 dB
	1 mV	-0.66	dB	+0.66	-0.17	dB	+0.17	-0.66	dB	+0.66	-0.66	dB	+0.66	±0.34 dB

Waveform distortion

Distortion	20 Hz	1 kHz	10 kHz	20 kHz
OSC.1	dB	dB	dB	dB
OSC.2	dB	dB	dB	dB
Measurement uncertainty		±	:1	
Effective upper limit	-46 dB	-51 dB	-46 dB	-46 dB

Section 5 Peformance Tests

RF analyzer

Power meter accuracy measurement

Main	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty	Effective lower limit	Effective upper limit
+10 dBm	dB	dB	dB	dB	12 (0)	6 101	16 101
0 dBm	dB	dB	dB	dB	±3.6%	-6.4%	+6.4%

Aux	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty	Effective lower limit	Effective upper limit
+10 dBm	dB	dB	dB	dB			
0 dBm	dB	dB	dB	dB	±0.24 dB	–0.76 dB	+0.76 dB
-10 dBm	dB	dB	dB	dB	±0.24 dB	-0.70 dB	+0.70 uB
-20 dBm	dB	dB	dB	dB			

Power meter linearity

Main	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty	Effective lower limit	Effective upper limit
-10 dB	dB	dB	dB	dB			
-20 dB	dB	dB	dB	dB	±0.07 dB	-0.23 dB	+0.23 dB
-30 dB	dB	dB	dB	dB			

Aux	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty	Effective lower limit	Effective upper limit
-10 dB	dB	dB	dB	dB			
-20 dB	dB	dB	dB	dB	±0.07 dB	–0.23 dB	+0.23 dB
-30 dB	dB	dB	dB	dB			

Frequency counter accuracy measurement

	10 MHz	800 MHz	1.9 GHz	3 GHz	Measurement uncertainty		Effective upper limit
Main –15 dBm	Hz	Hz	Hz	Hz	10.01	0.00 11-	10.00 Hz
Aux –40 dBm	Hz	Hz	Hz	Hz	±0.01	–9.99 Hz	+9.99 Hz

FM demodulation deviation accuracy

Deviation	10 MHz Accuracy	1500 MHz Accuracy	3000 MHz Accuracy	Measurement uncertainty	Effective lower limit	Effective upper limit
2.40484 kHz	%	%	%		-1.14 %	+1.14 %
5.52009 kHz	%	%	%		-0.95 %	+0.95 %
8.6535 kHz	%	%	%	±0.2 %	-0.90 %	+0.90 %
11.7915 kHz	%	%	%		-0.87 %	+0.87 %
14.9301 kHz	%	%	%		-0.86 %	+0.86 %

5.3 Performance Tests

F	FM demodulation frequency characteristics										
		10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit				
	20 Hz	dB	dB	dB							
	400 Hz	dB	dB	dB		-0.45 dB	+0.45 dB				
	1 kHz	0 dB	0 dB	0 dB	±0.05 dB						
	5 kHz	dB	dB	dB	±0.05 dB						
	10 kHz	dB	dB	dB							
	20 kHz	dB	dB	dB							

FM demodulation frequency characteristics

Demodulation residual FM

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
Residual FM	Hz	Hz	Hz	1.2 Hz	-6.8 Hz	+6.8 Hz

FM demodulation distortion

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective upper limit
Distortion	%	%	%	0.12 %	0.18 %

øM demodulation deviation accuracy

\square	10 1	ИНz	1500	MHz	3000	MHz	Measurement	Effective	Effective
	Calibrated value	Accuracy	Calibrated value	Accuracy	Calibrated value	Accuracy	uncertainty	lower limit	upper limit
2.40484 rad	%	%	%	%	%	%		-1.22 %	+1.22 %
5.52009 rad	%	%	%	%	%	%	±0.2 %	-0.99 %	+0.99 %
8.6535 rad	%	%	%	%	%	%		-0.92 %	+0.92 %

øM frequency characteristics

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
300 Hz	dB	dB	dB			
1 kHz	dB	dB	dB	±0.05 dB	-0.45 dB	+0.45 dB
2 kHz	dB	dB	dB			
3 kHz	dB	dB	dB			

Demodulation residual øM

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective upper limit
Residual FM	rad	rad	rad	0.0012 rad	0.0088 rad

øM demodulation distortion

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective upper limit
Distortion	%	%	%	< 0.12 %	0.38 %

Section 5 Peformance Tests

FM demodulation output frequency characteristics

Range: 4 kHz

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
50 Hz	dB	dB	dB			
400 Hz	dB	dB	dB			
1 kHz	dB	dB	dB	±0.18	-0.82	+0.82
5 kHz	dB	dB	dB			
10 kHz	dB	dB	dB			

Range: 40 kHz

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
50 Hz	dB	dB	dB			
400 Hz	dB	dB	dB			
1 kHz	dB	dB	dB	±0.18	-0.82	+0.82
5 kHz	dB	dB	dB			
10 kHz	dB	dB	dB			

FM demodulation output distortion

	10 MHz	1500 MHz	3000 MHz	Measurement uncertainty	Effective lower limit	Effective upper limit
Distortion	%	%	%	< 0.17 %	-0.83 %	+0.83 %

Audio analyzer

AF level measurement accuracy

	1 mV	40 mV	400 mV	1 V	4 V	5 V
30 Hz	dB	dB	dB	dB	dB	dB
400 Hz	dB	dB	dB	dB	dB	dB
1 kHz	dB	dB	dB	dB	dB	dB
5 kHz	dB	dB	dB	dB	dB	dB
10 kHz	dB	dB	dB	dB	dB	dB
20 kHz	dB	dB	dB	dB	dB	dB
Measurement uncertainty	±0.43 dB	±0.26 dB	±0.18 dB			
Effective lower limit	-0.07 dB	-0.24 dB	-0.32 dB			
Effective upper limit	+0.07 dB	+0.24 dB		+0.3	2 dB	

Distortion rate measurement accuracy

	2.5 V	Measurement uncertainty	Effective lower limit	Effective upper limit
1 kHz	dB	±0.76 dB	-0.24 dB	+0.24 dB

Frequency measurement accuracy

	0.3 mV	30 mV	3 V	30 V	Measurement uncertainty	Effective lower limit	Effective upper limit
30 Hz	dB	dB	dB	dB		–0.099 Hz	+0.099 Hz
100 Hz	dB	dB	dB	dB	<±1 mHz	–0.099 Hz	+0.099 Hz
1 kHz	dB	dB	dB	dB	$\leq \pm 1$ IIIIIZ	–0.099 Hz	+0.099 Hz
20 kHz	dB	dB	dB	dB		–0.099 Hz	+0.099 Hz

5.4 About Service

If the equipment is fractured or does not operate as specified, contact the head office, a branch office, a sales office, a local office, or Customer Service Department of Anritsu Corporation to ask the repair. Addresses and telephone numbers are described on the back cover.

Provide the following information when asking the repair:

- (a) Machine name and number described on the back panel.
- (b) Malfunction status
- (c) Contact person to check the malfunction contents or to inform the repair completion.

Section 6 Calibration

This section describes the measuring instruments required to calibrate the MT8801C, and the setup and calibration method for these instruments.

- - Calibration6-36.3.1Calibrating the reference crystal oscillator6-3

6.1 Calibration Requirements

Calibration is done to help maintain the MT8801C's performance. Calibration should be performed periodically even if the MT8801C is operating normally. We recommend that the MT8801C be calibrated once or twice a year.

Contact the Service Department of Anritsu Corporation if the MT8801C fails to meet the specifications during calibration.

6.2 Equipment Required for Calibration

The table below shows the equipment required to calibrate each item.

Recommended equipment	Required performance†	Calibration item
Frequency counter (MF1603A)	 100 KHz to 3 GHz Resolution: 1 Hz External reference input: 10 MHz 	Frequency accuracy of reference crystal oscillator
Frequency standard	Standard radio-wave receiver or equipment having equivalent function (accuracy better than 1 x 10 ⁻⁹)	Frequency accuracy of reference crystal oscillator

Table 6.1 Equipment Required for Calibration

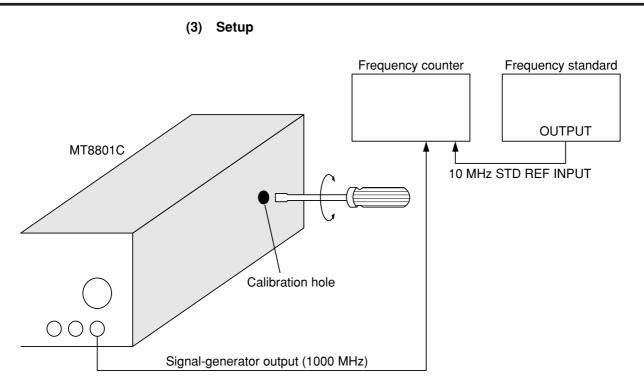
[†] Extracts part of performance which can cover the measurement range of the test item.

6.3 Calibration

Do not start the performance tests until the MT8801C and measuring instruments have warmed up for at least 24 hours and they have stabilized completely. To obtain the best measurement accuracy, do the calibration at room temperature. Keep AC power voltage fluctuations, noise, vibration, dust, humidity, and any other facxtors which can affect results to a minimum.

6.3.1 Calibrating the reference crystal oscillator

The stability of the MT8801C reference crystal oscillator is $\pm 2 \ge 10^{-8}$ /day. Calibrate the frequency of the reference crystal oscillator by using a reference signal generator generating a reference signal that is either locked to a standard wave or to the sub-carrier of a TV broadcast on a color TV (the sub-carrier will be locked to a rubidium atomic standard).


(1) Specifications

Reference oscillator	Frequency	Aging rate	Temperature characteristics
Standard type	10 MHz	2 x 10 ⁻⁸ /day	±5 x 10 ⁻⁸ (0°C to 50°C)
(after 24-hour operation)			

(2) Instruments required for calibration

- Frequency counter: 10 MHz external reference input, resolution: 1 Hz
- Frequency standard: Standard radio-wave receiver or equipment having equivalent function (accuracy better than 1×10^{-9})

(4) Calibration procedure

Step	Procedure
1.	Setup the equipment as shown in the figure above. The ambient temperature must be $23^{\circ}C \pm 5^{\circ}C$
2.	Set the Power switch on the rear panel to On and the Power switch on the front panel to the Standb position. Then, allow the MT8801C reference crystal oscillator to warm-up for 24 hours.
3.	Set the Power switch on the MT8801C front panel to On.
4.	Apply the standard frequency signal to the external reference input of the frequency counter.
5.	Set the frequency of the signal generator of the MT8801C to 1 000.000 000 MHz, the level to -2 dBm, and the modulation to off.
6.	Adjust the calibration trimmer of the crystal oscillator so that the frequency-counter reading is $000.000 \text{ 000 MHz} + -10 \text{ Hz}.$

Section 7 Storage and Transportation

This section describes the long-term storage, repacking, and transportation of the MT8801C and the regular maintenance procedures.

7.1	Cleani	ing the Cabinet	7-2		
7.2	Storag	Storage Precautions			
	7.2.1	Precautions before storage	7-3		
	7.2.2	Recommended storage conditions	7-3		
7.3	Repac	king and Transportation	7-4		
	7.3.1	Repacking	7-4		
	7.3.2	Transportation	7-4		

7.1 Cleaning the Cabinet

Always turn the MT8801C power switch OFF and disconnect the power plug from the AC power inlet before cleaning the cabinet. To clean the external cabinet:

- Use a soft, dry cloth.
- Use a cloth moistened with diluted neutral cleaning liquid if the instrument is very dirty or before long-term storage. Then, use a soft, dry cloth to wipe the instrument dry.
- If loose screws are found, tighten them with the appropriate tools.

CAUTION \triangle

Never use benzine, thinner, or alcohol to clean the cabinet; these chemicals may damage the coating or cause deformation or discoloration.

7.2 Storage Precautions

This paragraph describes the procedures for long-term storage of the MT8801C.

7.2.1 Precautions before storage

- (1) Before storage, wipe dust, finger-marks, and other contaminants off the MT8801C.
- (2) Avoid storing the MT8801C where it may be exposed to:
 - 1) Direct sunlight or high dust levels.
 - 2) High humidity.
 - 3) Active gasses or acid.
 - 4) The following temperatures or humidity:
 - Temperature: > 60 °C, <-20 °C
 - Humidity:≥ 90%

7.2.2 Recommended storage conditions

The recommended storage conditions are as follows:

- Temperature: 0 to 30 $^\circ C$
- Humidity: 40% to 80%
- Stable temperature and humidity over a 24-hour period.

7.3 Repacking and Transportation

Take the following precautions if the MT8801C must be returned to Anritsu Corporation for servicing.

7.3.1 Repacking

Use the original packing materials. If the MT8801C is packed in other materials, observe the following packing procedure:

- (1) Wrap the MT8801C in a plastic sheet or similar material.
- (2) Use a cardboard box, wooden box, or aluminum case which allows shock-absorbing material to be inserted on all sides of the MT8801C.
- (3) Use enough shock-absorbing material to protect the MT8801C during transportation and to prevent it from moving in the container.
- (4) Secure the container with packing straps, adhesive tape, or bands.

7.3.2 Transportation

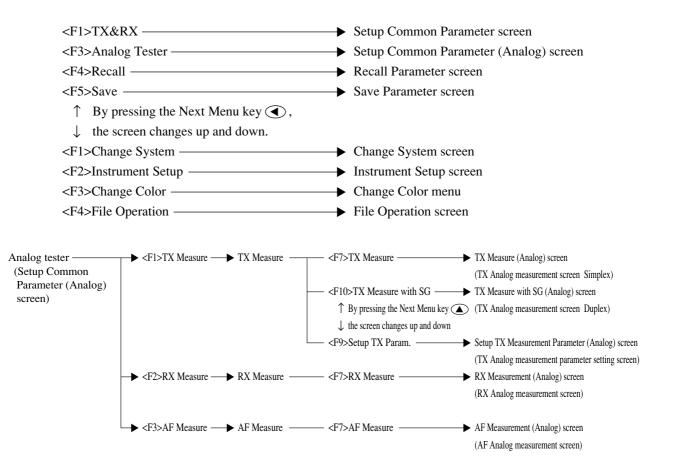
Do not subject the MT8801C to severe vibration during transport. Also, transport under the storage conditions recommended in paragraph 7.2.

Appendixes

Appendix A Screen/ Function Key Change Figure	A-1
Appendix B List of Initial Values	B-1
Appendix C Index	C-1

Appendixes

Appendix A Screen/ Function Key Change Figure

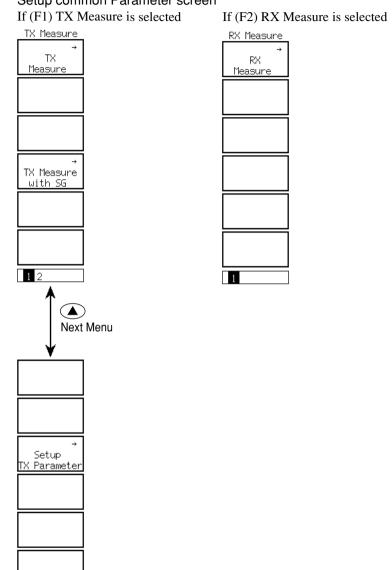

The change of screen and the change of function keys for each screen are illustrated in the figure.

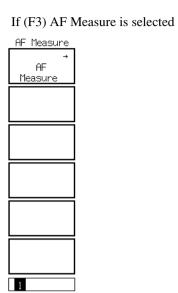
[Screen Change] Refer to Item 3.2.

In any screen, when [Main Func: On Off] F6 key is turned on, the following main menu is displayed. When a main menu item is selected using the main function keys F1 to F5 or Next Menu key [<], the screen will change to the corresponding screen or key menu.

Note:

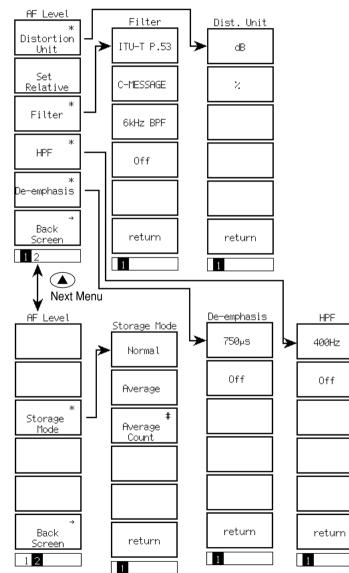
Change Color is a function key menu, therefore there is no corresponding screen.

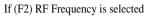


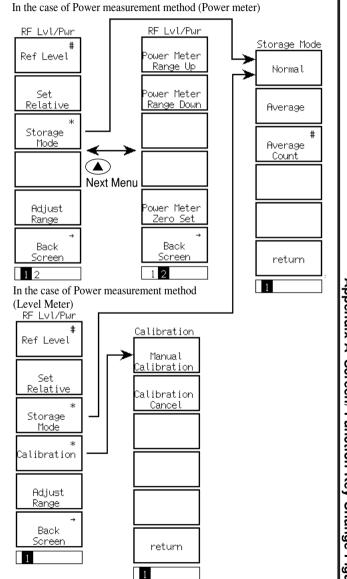

Change of function keys for each screen]
 Note: When (Back Screen) or (Beturn

1 2

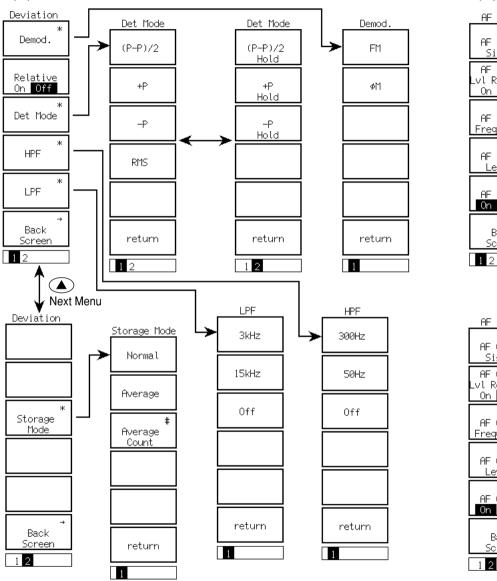
Note: When (Back Screen) or (Return) of F12 at the bottom of the displayed function keys is selected, the screen returns to the upper screen.

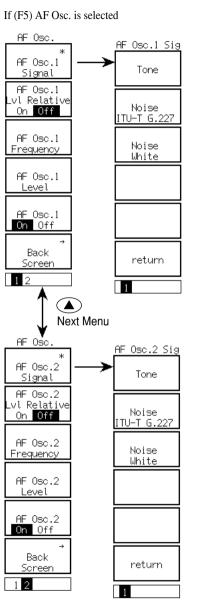

Setup common Parameter screen



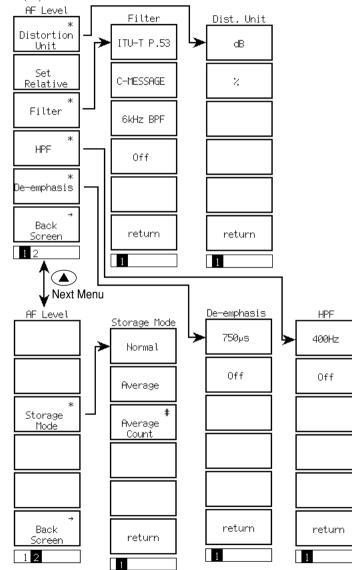

TX Measure (Analog) screen

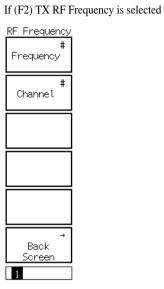
If (F1) AF Level is selected

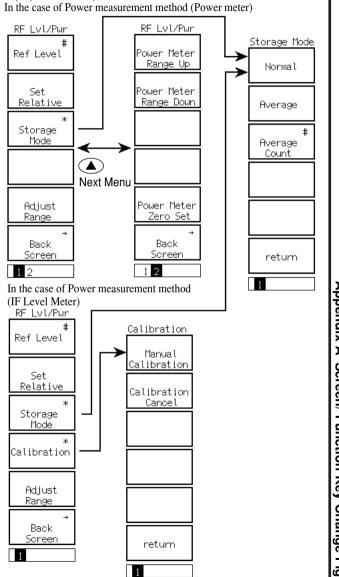




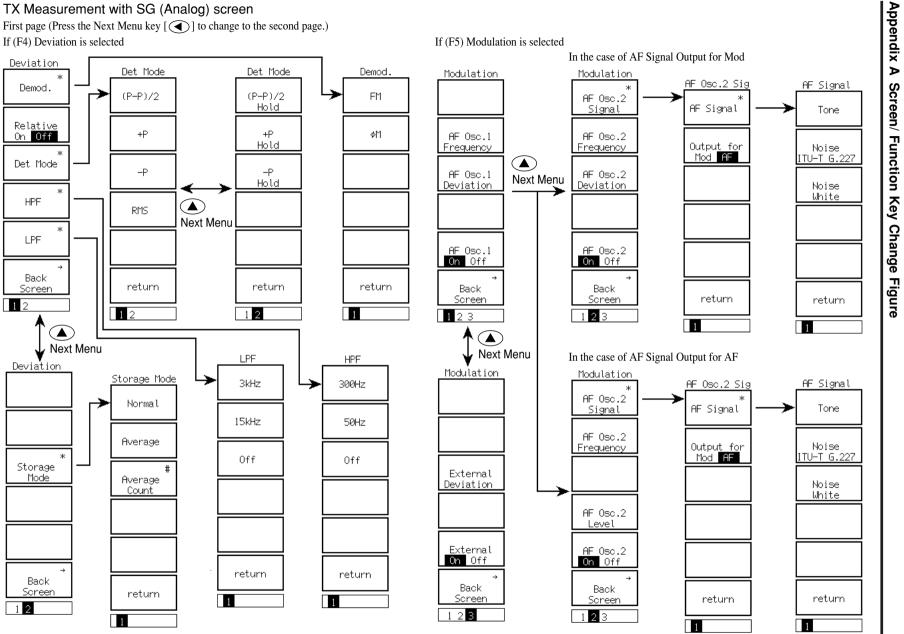
If (F3) RF Level/ Power is selected

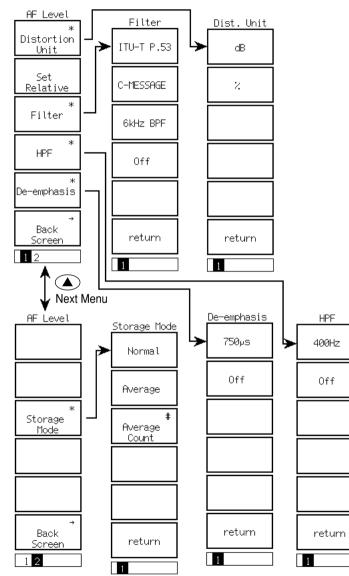

TX Measurement (Analog) screen

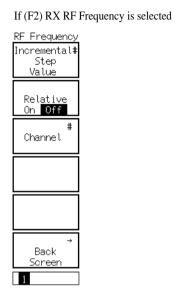

If (F4) Deviation is selected



First page (Press the Next Menu key []] to change to the second page.) If (F1) AF Level is selected

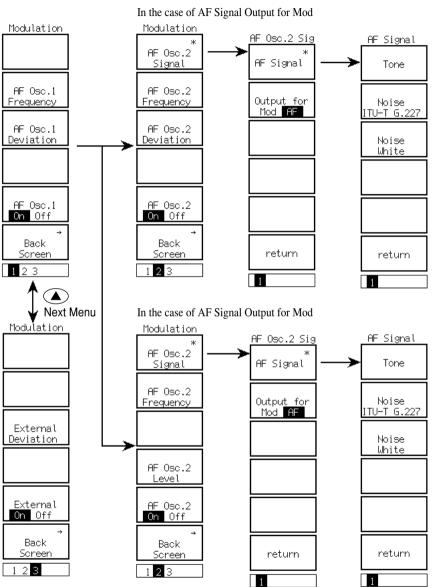



If (F3) TX RF Level/ Power is selected


First page (Press the Next Menu key [()] to change to the second page.) If (F4) Deviation is selected

A-6

Second page (Press the Next Menu key [] to change to the first page.) If (F1) AF Level is selected



If (F3) RX RF Level is selected

A-7

Second page (Press the Next Menu key []] to change to the first page.) If (F5) Modulation is selected

RX Measurement (Analog) screen

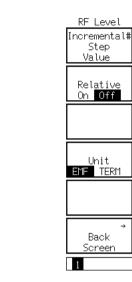
If (F2) RF Frequency is selected

RF F<u>requency</u>

Incremental# Step Value

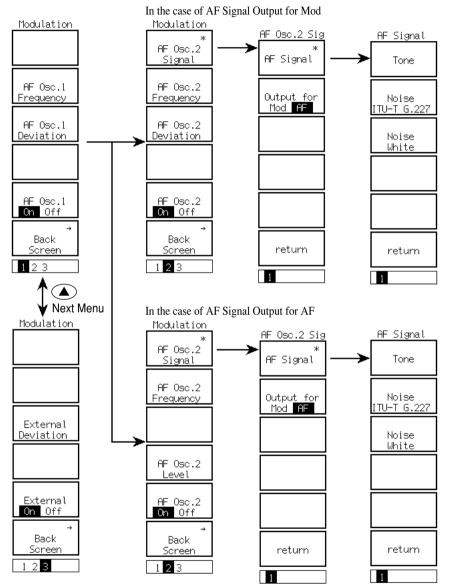
> Relative On Off

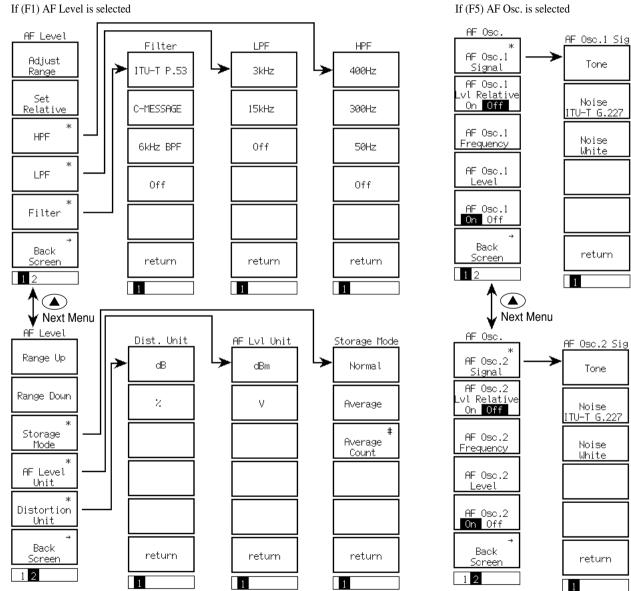
Channel


Back

Screen

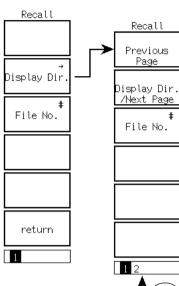
1

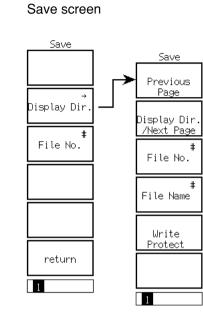

#

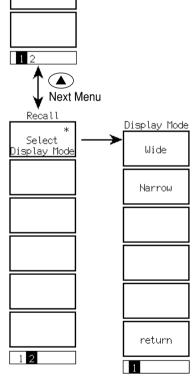


RX Measurement (Analog) screen

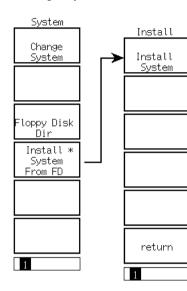
If (F5) Modulation is selected

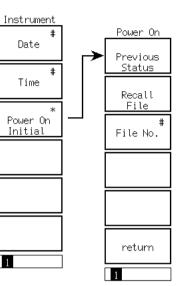

AF Measurement (Analog) screen



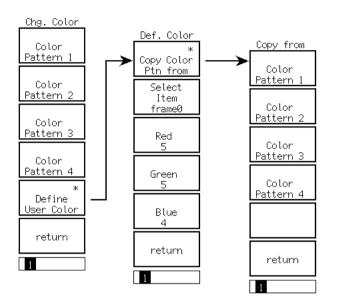

If (F5) AF Osc. is selected

A-11

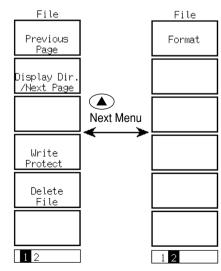

Recall screen



Change System screen



Instrument Setup screen


1

Change Color menu

File Operation screen

Appendix B List of Initial Values

- Initial values are the values at the time of shipping from the factory.
- The items marked with an asterisk are those which are not indicated or selected by default.
- EPS in the "Outset" column on the right end of the table means an item which is initialized by the [Preset] key on the panel and "PRE" "INI" remote control command. PW in the same column means an item which is initialized by the "RST" remote control command. An item which is initialized by the "PRE" or "INI" command can be initialized also by the "RST" command.
- An item which is not initialized by either method is marked "NO".

• Setup Common Parameter (Analog) screen

Item		Initial value		Outset
RF Frequency				
Channel & Frequency				
Channel			0 CH	PW
Frequency	TX Neas.		100.000 000 MHz	PW
	RX Neas.		100.000 000 MHz	PW
Channel spasing			25.000 kHz	PW
RF Level				
TX Measure Ref Level		(MAIN)	30.0 dBm	PW
		(AUX)		PW
TX Power Meter Range			40.0 dBm	PW
RX Measure Output Level		(MAIN)	-55.0 dBm	PW
		(AUX)		PW
AF Level input				
Range			30 V	PW
Impedance			100 kΩ	PW
AF Level output				
Impedance			600 Ω	PW

• Setup TX Measure Parameter(Analog) screen

Item	Initial value	Outset PW	
User Cal Factor	0.00 dB		
Power measure method	Power Meter	PW	
	(For AUX input, IF Level Meter is	fixed.)	
RF measure mode	All	PW	
Demod. Doutput terminal			
Range	40 kHz	PW	
HPF	300 Hz	PW	
LPF	3 kHz	PW	
De-emphasis	off	PW	
Squelch	Auto	PW	

Appendix B List of Initial Values

• TX Measure(Analog) screen

Item		Initial value	Outset	
• Main function key :				
Second page				
[PTT On Off]F4	C	Off	PS	
• AF Level function key :				
First page				
[Distortion Unit]F7	9/	6	PS	
[Filter]F9	C	Off	PW	
[HPF]F10	C	Off	PW	
[De-emphasis]F11	C	Off	PW	
Second page				
[Strage Mode]F9 Normal	Р	S		
[Average Count]F9	1	0	PS	
• RF Frequency function key :				
[Frequency]F7	1	00.000 000 MHz	PW	
[Channel]F8	0	СН	PW	
• RF Level/Power function key :				
[Ref level]F7	(MAIN) 3	0.0 dBm	PW	
	(AUX) –	_	PW	
[Strage Mode]F9 Normal	Р	S		
[Average Count]F9	1	0	PS	
• Deviation function key :				
First page				
[Demod.]F7	F	Μ	PW	
[Relative On Off]F8	C	Off	PS	
[Det Mode]F9	()	P-P)/2	PW	
[HPF]F10	C	Off	PW	
[LPF]F11	C	Off	PW	
Second page				
[Strage Mode]F9 Normal			PS	
[Average Count]F9	1	0	PS	

Item	Initial value	Outset
AF Osc. function key :		
First page		
[AF Osc.1 Signal]F7	Tone	PW
[AF Osc.1 Lvl Relative On Off]F8	Off	PS
[AF Osc.1 Frequency]F9	1000.0 Hz	PW
[AF Osc.1 Level]F10	100.0 mV	PW
[AF Osc.1 On Off]F11	On	PS
Second page		
[AF Osc.2 Signal]F7	Tone	PW
[AF Osc.2 Lvl Relative On Off]F8	Off	PS
[AF Osc.2 Frequency]F9	1000.0 Hz	PW
[AF Osc.2 Level]F10	100.0 mV	PW
[AF Osc.2 On Off]F11	Off	PS

• TX Measure with SG (Analog) screen

Item	Initial value	Outse
Main function key :		
Second page		
[RX RF Level On Off]F4	Off	PS
AF Level function key :		
First page		
[Distortion Unit]F7	%	PS
[Filter]F9	Off	PW
[HPF]F10	Off	PW
[De-emphasis]F11	Off	PW
Second page		
[Strage Mode]F9 Normal	PS	
[Average Count]F9	10	PS
• TX RF Frequency function key :		
[Frequency]F7	100.000 000 MHz	PW
[Channel]F8	0 CH	PW
• TX RF Level/Power function key :		
First page		
[Ref level]F7	(MAIN) 30.0 dBm	PW
	(AUX) —	PW
[Strage Mode]F9 Normal	PS	
[Average Count]F9	10	PS
Deviation function key :		
First page		
[Demod.]F7	FM	PW
[Relative On Off]F8	Off	PS
[Det Mode]F9	(P-P)/2	PW
[HPF]F10	Off	PW
[LPF]F11	Off	PW
Second page		
[Strage Mode]F9 Normal	PS	
[Average Count]F9	10	PS

Item	Initial value	Outset
Modulation function key :		
[AF Osc.1 Frequency]F8	1.0000 kHz	PW
[AF Osc.1 Deviation]F9	3.50 kHz	PW
[AF Osc.1 On Off]F11	On	PS
Second page		
[AF Osc.2 Signal]F7		
[AF Signal]F7	Tone	PW
[Output for Mod AF]F8	Mod	PW
[AF Osc.2 Frequency]F8	1.0000 Hz	PW
[AF Osc.2 Deviation]F9	3.50 kHz (only for AF Osc.2 Signal=Mod)	PW
[AF Osc.2 Level]F10	100.0 mV (only for AF Osc.2 Signal=AF)	PW
[AF Osc.2 On Off]F11	Off	PS
Second page		
[External Deviation]F9	3.50 kHz	PW
[External On Off]F11	Off	PS
• RX RF Frequency function key :		
[Incremental Step Value]F7	1.000 000 MHz	PS
[Relative On Off]F8	Off	PS
[Channel]F9	0 CH	PW
• RX RF Level function key :		
[Incremental Step Value]F7	1.0 dB	PS
[Relative On Off]F8	Off	PS
[Unit EMF TERM]F10	EMF	PS

• RX Measure(Analog) screen

Item	Initial value	Outse
Main function key :		
First page		
[RF Level On Off]F4	Off	PS
• AF Level function key :		
First page		
[HPF]F9	Off	PW
[LPF]F10	Off	PW
[Filter]F11	Off	PW
Second page		
[Strage Mode]F9 Normal	PS	
[Average Count]F9	10	PS
[AF Level Unit]F10	V	PS
[Distortion Unit]F11	%	PS
• RF Frequency function key :		
[Incremental Step Value]F7	1.000 000 MHz	PS
[Relative On Off]F8	Off	PS
[Channel]F9	0 CH	PW
• RF Level function key :		
[Incremental Step Value]F7	1.0 dB	PS
[Relative On Off]F8	Off	PS
[Unit EMF TERM]F10	EMF	PS
 Modulation function key : 		
[AF Osc.1 Frequency]F8	1.0000 kHz	PW
[AF Osc.1 Deviation]F9	3.50 kHz	PW
[AF Osc.1 On Off]F11	On	PS
Second page		
[AF Osc.2 Signal]F7		
[AF Signal]F7	Tone	PW
[Output for Mod AF]F8	Mod	PW
[AF Osc.2 Frequency]F8	1.0000 Hz	PW
[AF Osc.2 Deviation]F9	100.0 mV (only for AF Osc.2 Signal=AF)	PW
[AF Osc.2 Level]F10	100.0 mV (only for AF Osc.2 Signal=AF)	PW
[AF Osc.2 On Off]F11	Off	PS
Second page		
[External Deviation]F9	3.50 kHz	PW
[External On Off]F11	Off	PS

Item	Initial value	Outset
AF Level function key :		
First page		
[HPF]F9	Off	PW
[LPF]F10	Off	PW
[Filter]F11	Off	PW
Second page		
[Strage Mode]F9 Normal	PS	
[Average Count]F9	10	PS
[AF Level Unit]F10	V	PS
[Distortion Unit]F11	%	PS
• AF Osc. function key :		
First page		
[AF Osc.1 Signal]F7	Tone	PW
[AF Osc.1 Lvl Relative On Off]F8	Off	PS
[AF Osc.1 Frequency]F9	1 000.0 Hz	PW
[AF Osc.1 Level]F10	100.0 mV	PW
[AF Osc.1 On Off]F11	On	PS
Second page		
[AF Osc.2 Signal]F7	Tone	PW
[AF Osc.2 Lvl Relative On Off]F8	Off	PS
[AF Osc.2 Frequency]F9	1 000.0 Hz	PW
[AF Osc.2 Level]F10	100.0 mV	PW
[AF Osc.2 On Off]F11	Off	PS

• AF Measure(Analog) screen

Recallscreen

Item	Initial value	Outset
[File No.] F9	0	
[Select display Mode]F7	Narrow	PW

• Savescreen

Item	Initial value	Outset
[File No.] F9	0	

• Change System screen No initial value exists.

• Instrument Setupscreen

Item	Initial value	Outset
Frequency		
Reference Frequency	10 MHZ	No
RF Input/Output	Main	No
Display		
Display Title	User Define	No
Title		No
Clock Display	YY/MM/DD (Year, Month, Day)	No
Interface		
Connect to Controller	GPIB	No
GPIB		
Adress	1	No
RS232C		
Baud Rate	2400	No
Parity	Even	No
Data Bit	8 bit	No
Stop Bit	1 bit	No
Hard Copy		
Output Divice	Printer (Parallel)	No
Туре	ESC/P	No
Alarm	On	No
[Power On Initial]F9:	Previous Status	No
[File No.]F9	0	No

• Change Color menu

Item	Initial value	Outset
Chg. Color menu	Color Pattern 1	No
[Define User Color] F11		No

• File Operation screen No initial value exists.

• The numbers on the right indicate section and paragraph numbers in this operation manual.

AF Input/Output connectors	
AF Measure	3.2.1, 4.7
Adjust Range	4.3.4 (b)
Alarm	4.3.6
Analog Tester	3.2
AUX Input/Output connectors	3.1, 4.2 (1), 4.3.1, 4.3.6
Average Count	4.2 (1), 4.5.2 (1)
Alternate key	2.2.2
Allowable maximum power	4.3.6, 4.10
Change Color	4.3.7
Clock	
Crystal oscillator stability	
Compensation for RF cable loss at TX measurement	
	1.2 (1), 1.5.5
Delete File	4.9
Demod Output connector	
Display Dir	
· ·	
DUT Interface connector	3.1, 4.3.1
Ext FM Input connector	3.2.1
Entering title	2.5.1
Error messages at measurement	4.2 (1)
Equipment configuration	3.2.1
Format	4.9
Fan clearance	2.1
GPIB	3.1. 4.3.6. 4.11
Hard Copy	436410
Handling FD	
Handling storage media	
	J.1, 4.1.1
	424451
IF Level Meter	
Interface	
Inputing item and data	
Input/output connectors	
Installation site and environmental conditions	2.1
LCD display	3.1, 4.2

Appendix C Index

Main Input/Output connector	3.1, 4.2 (1), 4.3.1, 4.3.6
Manual Calibration	4.2 (1), 4.3.4
Manual composition	1.2
Maximum power to connectors	2.2.2
Operating file	4.9
Overview of functions	3.2.2 (3), 4.2 (3)
Overview of functions	3.2.1
Optimizing measurement range	4.3.4 (b)

Power measure method	4.3.4, 4.5.1
Power Meter	4.3.4, 4.5.1
Precaution before storage	7.2.1
Protective grounding	2.3.1, 3.1, 4.1
Preparation before power-on	2.3

Recall	4.8
RF measure mode	4.5.1
RS232C	3.1, 4.3.6, 4.11
RX Measure	3.2.1, 4.6
Reference crystal oscillator	4.1.1
Repacking and transportation for servicing	7.3
Receiver (RX) measurement	7.2.2
Recommended storage conditions	1.1
Replacing fuse	2.3.2

Save	4.8
Serial	3.1
Setup Common Parameter (Analog)	4.4
Set Relative	4.5.2 (1)
Screen hard copy	4.3.7
Setting screen display color	4.3.6
Safety measure	4.1 (2)
Setup state after power-on	4.1.3, 4.3.6
Saving/recalling parameter and data	4.8
Safety measures for power supply	2.2.1
Specifications	1.3
Settings relating to remote control and panel key control	4.3.6, 4.11

TX Measure	. 3.2.1, 4.5
TX Measure with SG	3.2.1, 4.5
Transmitter (TX) measurement	4.5
Turning on and off	4.1

Appendix C Index

User Cal Factor	4.2 (1), 4.5.1
Unit EMF TERM	
User calibration	

Write Protect

MT8801C

Radio Communication Analyzer

Option 01: Analog Measurement Operation Manual (Remote Operation)

Table of Contents

Section 1 General		
1.1	General Description	1-2
1.2	Remote Control Functions	1-2
1.3	Example of System Configuration Using	
	RS-232C/GPIB	1-3
1.4	RS-232C Specifcations	1-3
1.5	GPIB Specifications	1-4

Sect	on 2 Device Messages	2-1
2.1	General Description	2-2
2.2	Suffix Code	2-3
2.3	IEEE488.2 Common Commands and Supported	
	Commands	2-4

2.4	Status Messages	2-6
2.5	Device Message List	2-8

Section 3	Setup	3-1
-----------	-------	-----

3.1	Connecting Devices with GPIB Cables	3-2
3.2	Setting GPIB Interface Conditions	3-3
3.3	Connection of RS-232C Interface Signal	3-4
3.4	Setting RS-232C Interface Conditions	3-5
3.5	Setting the Items Relating to Remote Control and Panel	

3-6

Section 4 Device Message Format 4-1

Key Control

4.1	General Description	4-2
-----	---------------------	-----

4.2Program Message Format4-24.3Response Message Format4-6

Section 5 Status Messages		
5.1	IEEE488.2 Standard Status Model	5-2
5.2	Status Byte (STB) Register	5-4
5.3	Enabling the Service Request (SRQ)	5-8
5.4	Standard Event Status Register	5-9
5.5	Extended Event Status Register	5-12
5.6	Techniques for Synchronizing the MT8801C with	
	a Controller	5-16

6.1	General Description	6-2
6.2	Bus Initialization by the IFC Statement	6-3
6.3	Initialization for Message Exchange by DCL and SDC	
	Bus Commands	6-4
6.4	Device Initialization by the *RST Command	6-5
6.5	Device Initialization by the PRE/INI/IP Command	6-6
6.6	Device Status at Power-on	6-7

7.1	Notes on creating the Program	7-2
7.2	Sample Program	7-3

Appendixes	App-1
Appendix A ASCII Code Table	A-1
Appendix B Comparison Table of Controllers' GPIB	
Instructions	B-1
Appendix C Index	C-1

Section 1 General

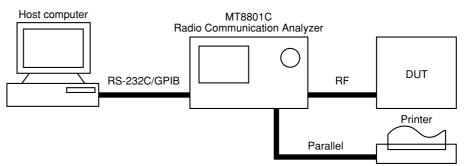
This section outlines the Remote Control functions of the MT8801C Radio Communication Analyzer.

1.1	General Description	1-2
1.2	Remote Control Functions	1-2
1.3	Example of System Configuration Using	
	RS-232C/GPIB	1-3
1.4	RS-232C Specifcations	1-3
1.5	GPIB Specifications	1-4

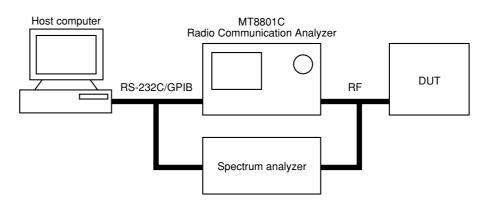
1.1 General Description

The MT8801C Radio Communication Analyzer, when combined with an external controller, can automate your measurement system. For this purpose, the MT8801C is equipped with an RS-232C interface port and a GPIB interface bus (IEEE Std 488.2-1987) as a standard feature.

1.2 Remote Control Functions


The Remote Control functions of the MT8801C are as follows:

- Controls all functions except the power switch, floppy disk unloading, and some keys including the [Local] key
- (2) Reads out all setting conditions
- (3) Sets the RS-232C interface conditions and GPIB address from the panel
- (4) Executes interrupts and serial polling


These functions enable to configure the automatic measurement system when the MT8801C is combined with a personal computer and other measuring instruments

1.3 Example of System Configuration Using RS-232C/ GPIB

(1) Control by the host computer (1)

(2) Control by the host computer (2)

1.4 RS-232C Specifcations

The RS-232C specifications of the MT8801C are shown in the table below.

Item	Specification	
Function	Control from an external controller (except power switch)	
Communication system	Asynchronous (start-stop method), half-duplex	
Communication control	X-ON/OFF control	
Baud rate	1200, 2400, 4800, 9600 bps	
Data bits	7 bits, 8 bits	
Parity	Odd, Even, None	
Start bit	1 bit	
Stop bit	1 bit, 2 bits	
Connector	D-sub 9 pins, female	

1.5 GPIB Specifications

The GPIB of the MT8801C provides the IEEE488.1 interface function subsets listed in the table below.

Code	Interface function		
SH1	All source handshake functions are provided. Synchronizes the timing of data transmission.		
AH1	All acceptor handshake functions are provided. Synchronizes the timing for receiving data.		
T6	Synchronizes the timing for receiving data. The serial poll function is provided. The talk-only function is not provided. The talker can be canceled by MLA.		
L4 Basic listener functions are provided. The listen-only function is not provided. The listener can be canceled by MTA.			
SR1	All service request and status byte functions are provided.		
RL1	All remote/local functions are provided. The local lockout function is provided.		
PP0	Parallel poll functions are not provided.		
DC1	All device clear functions are provided.		
DT1	The device trigger function is provided.		
C0 Controller functions are not provided.			

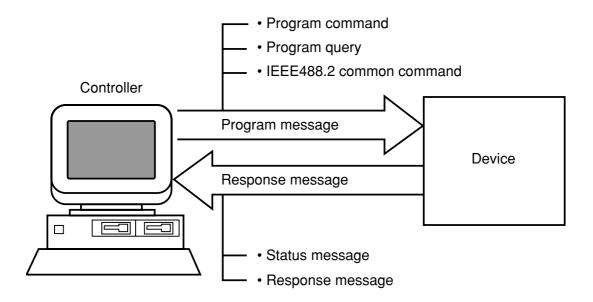
GPIB	Interface	Functions
------	-----------	------------------

Section 2 Device Messages

This section outlines and lists the device messages of the MT8801C.

2.1	General Description		
2.2	Suffix C	Code	2-3
2.3	IEEE48	38.2 Common Commands and	
	Suppor	ted Commands	2-4
2.4	Status	Messages	2-6
2.5	Device	Message List	2-8
	2.5.1	MT8801C common commands	2-11
	2.5.2	Instrument Setup command	2-13
	2.5.3	Analog tester commands	2-15
	2.5.4	Setup common parameter command	2-16
	2.5.5	TX Measure commands	2-17
	2.5.6	RX Measure commands	2-26
	2.5.7	AF Measure commands	2-29

2.1 General Description


A device message is a data message transmitted between the controller and device via the system interface. Device messages are classified into program messages and response messages.

A program message is an ASCII data message transferred from the controller to the device. Program messages are classified into program commands and program queries.

Program commands are classified into device-specific commands used exclusively to control the MT8801C, and IEEE488.2 common commands. IEEE488.2 common commands are also used for other measuring instruments conforming to IEEE488.2 connected to the bus.

A program query is a command used to obtain a response message from the device. It is transferred from the controller to the device in advance, then the controller receives the response message from the device.

A response message is an ASCII data message transferred from the device to the controller.

Program messages and response messages may have a suffix (units) at the end of the numeric data.

2.2 Suffix Code

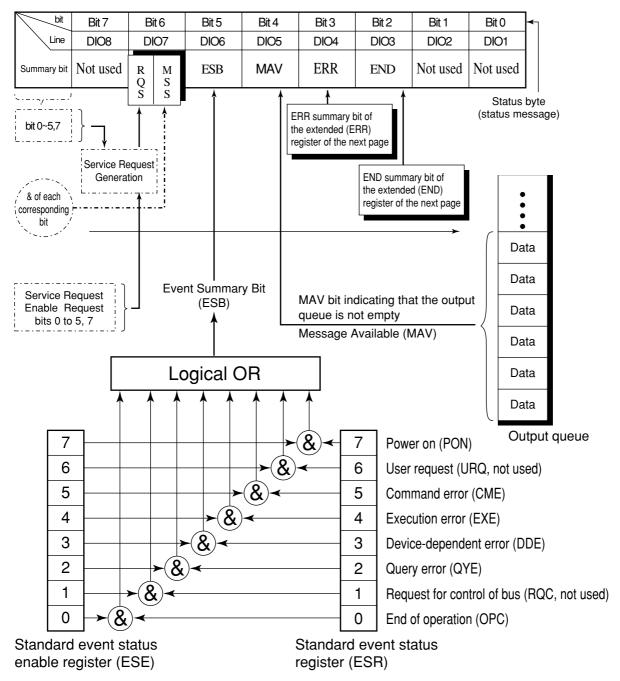
The table below shows the suffixes used for the MT8801C.

Туре	Unit	Suffix code	
	GHz	GHZ, GZ	
	MHz	MHZ, MZ	
Frequency	kHz	KHZ, KZ	
	Hz	HZ	
	Default	HZ	
	second	S	
Time	m second	MS	
Time	µsecond	US	
	Default	MS	
	dB	DB	
	dBm	DBM,DM	
Level (dB)	dBµ	DBU	
	Default	Determined in conformance with the set scale unit	
	W	W	
	mW	MW	
Level	μW	UW	
(W)	nW	NW	
	Default	UW	

MT8801C Suffix Codes

2.3 IEEE488.2 Common Commands and Supported Commands

The table below lists 39 common commands specified in the IEEE488.2 standard. IEEE488.2 common commands which are supported by the MT8801C are indicated with the \bigcirc symbol in the table.

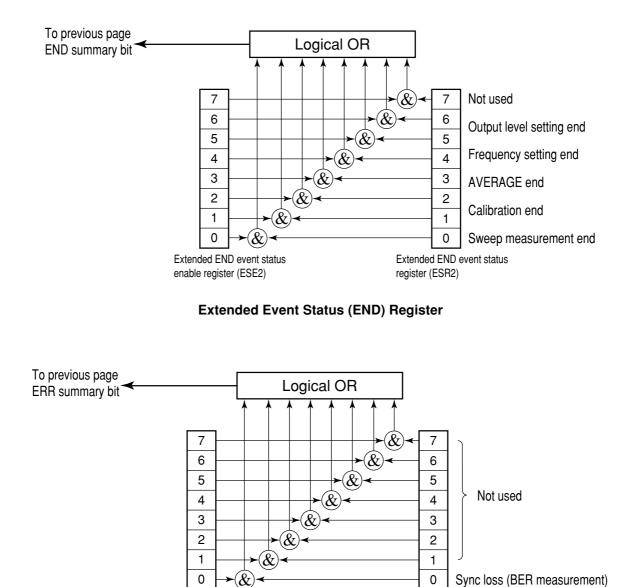

Mnemonic	Command name	IEEE488.2 standard	MT8801C supported commands
*ADD	Accept Address Command	Optional	
*CAL	Calibration Query	Optional	
*CLS	Clear Status Command	Mandatory	O
*DDT	Define Device Trigger Command	Optional	
*DDT?	Define Device Trigger Query	Optional	
*DLF	Disable Listenner Function Command	Optional	
*DMC	Define Macro Command	Optional	
*EMC	Enable Macro Command	Optional	
*EMC?	Enable Macro Query	Optional	
*ESE	Standard Event Status Enable Command	Mandatory	O
*ESE?	Standard Event Status Enable Query	Mandatory	O
*ESR?	Standard Event Status Register Query	Mandatory	O
*GMC?	Get Macor contents Query	Optional	
*IDN?	Identification Query	Mandatory	O
*IST?	Individual Status Query	Optional	
*LMC?	Learn Macro Query	Optional	
*LRN?	Learn Device Setup Query	Optional	
*OPC	Operation Complete Command	Mandatory	O
*OPC?	Operation Complete Query	Mandatory	O
*OPT?	Option Identification Query	Optional	
*PCB	Pass Control Back Command	Mandatory if other than C0	
*PMC	Purge Macro Command	Optional	
*PRE	Parallel Poll Register Enable Command	Optional	
*PRE?	Parallel Poll Register Enable Query	Optional	
*PSC	Power On Status Clear Command	Optional	
*PSC?	Power On Status Clear Query	Optional	
*PUD	Protected User Data Command	Optional	
*PUD?	Protected User Data Query	Optional	
*RCL	Recall Command	Optional	
*RDT	Resource Description Transfer Command	Optional	
*RDT?	Resource Description Transfer Query	Optional	
*RST	Reset Command	Mandatory	O
*SAV	Save Command	Optional	
*SRE	Service Request Enable Command	Mandatory	O
*SRE?	Service Request Enable Query	Mandatory	O
*STB?	Read Status Byte Query	Mandatory	Ô
*TRG	Trigger Command	Mandatory if DT1	Ô
*TST?	Self Test Query	Mandatory	Õ
*WAI	Wait to Continue Command	Mandatory	Õ

2.3 IEEE488.2 Common Commands and Supported Commands

IEEE488.2 common command				
Command name	Program Msg.	Query Msg.	Response Msg.	Remarks
Clear status	*CLS			
Standard event status enable	*ESE n	*ESE?	n	n:0 to 255
Standard event status register		*ESR?	n	n:0 to 255
Identification query		*IDN?	id	ID:Manufacturer name, model
identification query			name, etc.	
Operation complete	*OPC	*OPC?	1	
Reset	*RST			
Service request enable	*SRE	*SRE?	n	"n:0 to 63,128 to 191"
Read status byte		*STB?	n	
Trigger	*TRG			
Self test		*TST?	n	
Wait to continue	*WAI			

Table below lists the IEEE488.2 common commands used in the MT8801C.

2.4 Status Messages



The diagram below shows the structure of service-request summary messages for the status byte register (STB) used with the MT8001C.

Standard Event Status (STB) Register

Note:

& indicates a logical product (AND).

Extended ERR event status enable register (ESE3)

Extended ERR event status register (ESR3)

Extended Event Status (ERR) Register

2.5 Device Message List

MT8801C-specific program commands, query messages, and response messages are listed from paragraph 2.5.1.

• Device message table

(a) Program messages (Program Msg)/query message (Query Msg)

(i)	Uppercase characters	:	Reserved words
(ii)	Numeric	:	Reserved words (numeric code)
(iii)	Lowercase characters in argument		

		f (frequency)	:	Real number or integer with decimal point
			Units	: GHZ, MHZ, KHZ, HZ, GZ, MZ, KZ, no units = HZ
		t(time)	:	Real number or integer with decimal point
			Units	: S, SC, MS, US, no unit = US
		Q (level)	:	Real number or integer with decimal point
			Units	: DB, DBM, DM, DBU, W, MW, UW, NW, no units =
				set SCALE units
		n (no units integer)	:	Integer
		r (no units real number)	:	Real number
		h (no units hexadecimal number)	:	Hexadecimal number
		Others	:	Listed in remarks columns of the table
(b)	Response m	essages (Response Msg)		
	(i)	Uppercase characters	:	Reserved words
	(ii)	Numeric	:	Reserved words (numeric code)
	(iii)	Lowercase characters in argument		
		f (frequency)	:	12-character fixed integerunits = HZ
		t (time)	:	Real number or integer with decimal point
		Q (level)	:	Real number or integer with decimal point
		u (ratio)	:	Real number or integer with decimal point
		s (symbol)	:	Real number or integer with decimal point
		n (no units integer)	:	Integer, variable number of digits (Significant digits are output.)
		r (no units real number)	:	Real number with decimal point, variable number of
				digits (Significant digits are output.)
		h (no units hexadecimal number)	:	Hexadecimal number
		Others	:	Written in remarks columns of the table

Notes:

- Integer:NR1 format, real number:NR2 format
- 0/:Zero

Device messages are classified into 9 types according to their valid ranges:

1. MT8801C common commands :

Valid in all MT8801C modes

2. Instrument Setup command :

Valid in Instrument Setup panel mode

3. Analog tester commands :

Valid in Analog tester panel mode

4. Setup common parameter command :

Valid on the Setup common parameter screen

5. Setup TX Measure Parameter commands :

Valid on Setup TX Measure Parameter screen

6. TX Measure commands :

Valid on TX Measure screen

7. TX Measure with SG command :

Valid on TX Measure with SG screen

8. RX Measure commnad :

Valid on RX Measure screen

9. AF Measure command :

Valid on AF Measure screen

These device messages are listed below.

Section 2 Device Messages

Relationship between screen hierarchies and commands

[MT8801C common commands]:Valid in all MT8801C modes re	egardless of screen hierarchies
Save/Recall command	
FD command (Verify)	
Copy command	
Single/Continuous switching command	
Preset command	
Panel mode switching command	
Switch to upper screen command (BS: Back Screen)	
Extended event status command (END, ERR)	
[Screen hierarchies and commands]	
Panel mode switching commands	
	ion parameter command
 RX Measure screen switching command ***RX Measure screnn*** RX Measure screen : AF Measure screen switching command ***AF Measure screen*** AF Measure screen : 	***RX Measure command*** RX Measure commnd ***AF Measure command*** AF Measure command

2.5.1 MT8801C common commands

MT8801C common commands are valid in all MT8801C modes.

(1) Save/Recall commands (parameter saving and recalling)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Recall	Recall file	File No.	RCM n			
Save	Save file	File No.	SVM n			

(2) FD commands (verify)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	Verify	On	VERIFY ON	VERIFY?	ON	
		Off	VERIFY OFF	VERIFY?	OFF	

(3) Copy commands (copy)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	Сору		PRINT			
			PLS Ø			

(4) Single/Continuous switching commands

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	Single sweep	Measurement/	SNGLS			
		Sweep start	S2			
		Measurement/	SWP			
		Sweep synchronization	TS			
	Continuous		CONTS			
			S1			
	Measurement/	Measurement/Sweep end		SWP?	SWP Ø	
	Sweep status	Measurement/Sweep		SWP?	SWP 1	

(5) Preset commands (initialization, power-on setting)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	Preset		PRE			
			INI			
			IP			
	Preset value	Previous state	POWERON LAST	POWERON?	LAST	
		Recall memory No.	POWERON n	POWERON?	n	

Section 2 Device Messages

(6) Panel-mode switching commands (Analog tester mode, Instrument Setup mode)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	Analog tester		PNLMD ANALOG	PNLMD?	ANALOG	
	Instrument setup		PNLMD SYSTEM	PNLMD?	SYSTEM	

(7) Switch to upper screen command (BS)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	Back screen		BS			

(8) Extended event status commands (END)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Event status	END event status	Event status enable	ESE2 n	ESE2?	n	
		Event status register		ESR2?	n	
	ERR event status	Event status enable	ESE3 n	ESE3?	n	
		Event status register			n	

2.5.2 Instrument Setup command

The Instrument Setup command is valid in Instrument Setup Panel mode.

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Hardware	Reference frequency	10MHz	REF 10MHZ	REF?	10MHZ	
		13MHz	REF 13MHZ	REF?	13MHZ	
	RF in/out	Main	RFINOUT MAIN	RFINOUT?	MAIN	
		AUX	RFINOUT AUX	RFINOUT?	AUX	
Display	Display	On	DSPL ON			
		Off	DSPL OFF			
	Title display	DATE/TIME	TTL DATE	TTL?	DATE	
		USER define	TTL USER	TTL?	USER	
		OFF	TTL OFF	TTL?	OFF	
	Title input	User title	TITLE a	TITLE?	а	
			KSE a			
	Select date display	Japan (yy/mm/dd)	DATEMODE YMD	DATEMODE?	YMD	
	mode	USA (mm-dd-yy)	DATEMODE MDY	DATEMODE?	MDY	
		Europe (dd-mm-yy)	DATEMODE DMY	DATEMODE?	DMY	
	Set and read date	Japan (yy/mm/dd)	DATE yy,mm,dd	DATE?	yy,mm,dd	
	Set and read time		TIME hh,mm,ss	TIME?	hh,mm,ss	
Buzzer	Buzzer switch	On	ALARM ON	ALARM?	ON	
			BEP 1			
			BEP ON			
		Off	ALARM OFF	ALARM?	OFF	
			BEP Ø			
			BEP OFF			
	Sounds buzzer		BZR			
GPIB	Terminater	LF	TRM Ø			
		CR/LF	TRM 1			
RS232C	Baud rate	9600	BAUD 96ØØ	BAUD?	96ØØ	
		4800	BAUD 48ØØ	BAUD?	48ØØ	
		2400	BAUD 24ØØ	BAUD?	24ØØ	
		1200	BAUD 12ØØ	BAUD?	12ØØ	
	Parity	Even	PRTY EVEN	PRTY?	EVEN	
		Odd	PRTY ODD	PRTY?	ODD	
		Off	PRTY OFF	PRTY?	OFF	
	Data bit	7bits	DTAB 7	DTAB?	7	
		8bits	DTAB 8	DTAB?	8	
	Stop bit	1bit	STPB 1	STPB?	1	
		2bits	STPB 2	STPB?	2	

Section 2 Device Messages

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	Time out		TOUT t	TOUT?	t	
	Delimiter	LF	DELM Ø			
		CR/LF	DELM 1			
Print	Туре	ESC/P (24DOT)	PMOD 6	PMOD?	6	
		HP	PMOD 3	PMOD?	3	
		BMP(B&W)	PMOD11	PMOD?	11	
Color	Select pattern	Pattern1	COLORPTN COLOR1	COLORPTN?	COLOR1	
		Pattern2	COLORPTN COLOR2	COLORPTN?	COLOR2	
		Pattern3	COLORPTN COLOR3	COLORPTN?	COLOR3	
		Pattern4	COLORPTN COLOR4	COLORPTN?	COLOR4	
		User pattern	COLORPTN USERCOLOR	COLORPTN?	USERCOLOR	
	Copy from	Pattern1	COPYCOLOR COLOR1			
		Pattern2	COPYCOLOR COLOR2			
		Pattern3	COPYCOLOR COLOR3			
		Pattern4	COPYCOLOR COLOR4			
	User define	Red, green, blue	COLORDEF n,r,g,b,	COLORDEF? n	r,g,b	n:Frame number

2.5.3 Analog tester commands

• The Analog tester commands are valid in Analog tester panel mode (on all Analog test screens).

(1) Measure-mode switching commands

Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Setup Common Parameter		MEAS SETCOM	MEAS?	SETCOM	
Setup TX Measure Parameter		MEAS SETTX	MEAS?	SETTX	
TX Measure		MEAS TX	MEAS?	ТХ	
TX Measure with SG		MEAS TXSG	MEAS?	TXSG	
RX Measure		MEAS RX	MEAS?	RX	
AF Measure		MEAS AF	MEAS?	AF	

(2) Measure result status command

Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Status			MSTAT?	n	

• Response value n of MSTAT?

The table below lists the meanings of response value n of MSTAT? (measurement result status command).

Value of n	Explanation		
0	Normal termination		
1 RF input limit			
2	Level over		
3	Level under		
4	Unmeasurable		
5	Deviation under		
9	Unmeasured		

Section 2 Device Messages

2.5.4 Setup common parameter command

• Note that RF Frequency and RF Level program messages are also valid on all measurement screens of the TX Mesure, TX Mesure with SG and RX Measure.

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
RF Frequency	Channel		CHAN n	CHAN?	n [ch / 1ch]	
	TX Measure Frequency		TXFREQ f	TXFREQ?	f [Hz / 1Hz]	
	RX Measure Frequency		RXFREQ f	RXFREQ?	f [Hz / 1Hz]	
	Channel Spacing		CHSPC f	CHSPC?	f [Hz / 1Hz]	
RF Level	TX Measure Ref Level		RFLVL Q	RFLVL?	ℓ [dBm / 1dB]	
	TX Power	40.0dBm	PRNG 4Ø	PRNG?	4Ø	
	Meter Range	30.0dBm	PRNG 3Ø	PRNG?	3Ø	
		20.0dBm	PRNG 2Ø	PRNG?	2Ø	
		10.0dBm	PRNG 1Ø	PRNG?	1Ø	
	TX Power Meter Range	40.0dBm	PRNG5			
	(without Parameter)	30.0dBm	PRNG4			
		20.0dBm	PRNG3			
		10.0dBm	PRNG2			
	RX Measure	Specifies the input level with dBm unit.	OLVL ℓDBM	OLVL?	ℓ [dBm/0.1dB]	Unit can be changed by inputing the set value with a character string
	Output Level	Specifies the input level with dBu unit.	OLVL ℓDBU	OLVL?	ℓ [dBµ/0.1dB]	
		Specifies the input level with current selected unit.	OLVL Q	OLVL?	Q	of unit.
AF Level Input	Range	30V	ARNG 3Ø	ARNG?	3Ø	
		4V	ARNG 4	ARNG?	4	
		400mV	ARNG 4ØØM	ARNG?	4ØØM	
		40mV	ARNG 4ØM	ARNG?	4ØM	
	Impedance	600W	AIMP 6ØØ	AIMP?	6ØØ	
		100kW	AIMP 1ØØK	AIMP?	1ØØK	
AF Level Input	Impedance	600W	AOIMP 6ØØ	AOIMP?	6ØØ	
		50W	AOIMP 5Ø	AOIMP?	5Ø	

2.5.5 TX Measure commands

• Program messages of the TX Measure commands are valid in ranges defined on TX Mesure screens.

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	User Cal Factor		UCAL Q	UCAL?	ℓ [dB/0.01dB]	
	Power Meter	Power Meter	PMTH POW	PMTH?	POW	
	Method	IF Level Meter	PMTH IF	PMTH?	IF	
	RF Measure	All	RFMM ALL	RFMM?	All	
	Mode	RF Only	RFMM RF	RFMM?	RF	
	Range	40kHz	RRNG 4ØK	RRNG?	4ØK	
		4kHz	RRNG 4K	RRNG?	4K	
	High Pass Filter	300Hz	RHPF 3ØØ	RHPF?	3ØØ	
		Off	RHPF OFF	RHPF?	OFF	
	Low Pass Filter	3kHz	RLPF 3K	RLPF?	ЗK	
		Off	RLPF OFF	RLPF?	OFF	
	De-emphasis	On	RDEMP ON	RDEMP?	ON	
		Off	RDEMP OFF	RDEMP?	OFF	
	Squelch	Auto	RSQL AUTO	RSQL?	AUTO	
		Off	RSQL OFF	RSQL?	OFF	
AF Input	Range	30V	ARNG 3Ø	ARNG?	3Ø	
		4V	ARNG 4	ARNG?	4	
		400mV	ARNG 4ØØM	ARNG?	4ØØM	
		40mV	ARNG 4ØM	ARNG?	4ØM	

2.5.5.1 Setup TX Measure Parameter command

Section 2 Device Messages

2.5.5.2 TX Measure command

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Storage Mode	Storage Mode	Normal	STRG NRM	STRG?	NRM	
		Average	STRG AVG	STRG?	AVG	
	Average On		VAVG ON			
			VAVG 1			
			KSG			
	Average Off		VAVG OFF			
			VAVG Ø			
			KSH			
	Average Count		AVR n	AVR?	n	
			VAVG n	VAVG?	n	
RF Power	Adjust Range		ADJRNG			
	Manual Calibration		PWRCAL			
	Calibration Cancel		CALCANCEL			
	Power Meter Range	Range Up	PMRNG UP			
		Range Down	PMRNG DN			
	Power Meter Range	40.0dBm	PRNG5			
	(without Parameter)	30.0dBm	PRNG4			
		20.0dBm	PRNG3			
		10.0dBm	PRNG2			
	Power Meter Zero Set		ZEROSET			
	Set Relative		RFPWRSRL			
Deviation	Demod.	FM	DDMOD FM	DDMOD?	FM	
		øM	DDMOD PM	DDMOD?	PM	
	Detect Mode	(P-P)/2	DETMD PP	DETMD?	PP	
		+P	DETMD +P	DETMD?	–P	
		–P	DETMD –P	DETMD?	+P	
		RMS	DETMD RMS	DETMD?	RMS	
		(P-P)/2 Hold	DETMD PPH	DETMD?	PPH	
		+P Hold	DETMD +PH	DETMD?	+PH	
		–P Hold	DETMD –PH	DETMD?	–PH	
	High Pass Filter	300Hz	DHPF 300	DHPF?	300	
		50Hz	DHPF 50	DHPF?	5Ø	
		Off	DHPF OFF	DHPF?	OFF	
	Low Pass Filter	3kHz	DLPF 3	DLPF?	3	
		15kHz	DLPF 15	DLPF?	15	
		Off	DLPF OFF	DLPF?	OFF	
	Relative On/Off	On	RDEVRL ON	RDEVRL?	ON	
		Off	RDEVRL OFF	RDEVRL?	OFF	

2.5 Device Message List

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
AF Level/Distortion	Filter	ITU-T P.53	AFLT P53	AFLT?	P53	
		C-MESSAGE	AFLT CMESS	AFLT?	CMESS	
		6kHz BPF	AFLT BPF	AFLT?	BPF	
		Off	AFLT OFF	AFLT?	OFF	
	High Pass Filter	400Hz	AHPF 400	AHPF?	400	
		Off	AHPF OFF	AHPF?	OFF	
	De-emphasis	750µs	ADEMP 750	ADEMP?	75Ø	
		Off	ADEMP OFF	ADEMP?	OFF	
	Distortion Unit	dB	ADSTU DB	ADSTU?	DB	
		%	ADSTU PER	ADSTU?	PER	
	AF Level Set Relative	,,,	TALVLSRL			
	Range	30V	ARNG 3Ø	ARNG?	3Ø	
	Trange	4V	ARNG 4	ARNG?	4	
			ARNG 4ØØM			
		400mV		ARNG?	4ØØM	
DTT		40mV	ARNG 4ØM	ARNG?	4ØM	
PTT		On	PTT ON	PTT?	ON	
		Off	PTT OFF	PTT?	OFF	
RF Frequency	Channel		CHAN n	CHAN?	n[ch / 1ch]	
	TX Measure Frequency		TXFREQ f	TXFREQ?	f[Hz / 1Hz]	
RF Level	TX Measure Ref Level		RFLVL ℓ	RFLVL?	ℓ [dBm / 1dB]	
AF Oscillator 1	Frequency		AFREQ1 f	AFREQ1?	f[Hz / 0.1Hz]	
	Level	Specifies the input/output level with V unit.	ALVL1 vV(V,MV,UV)	ALVL1? V	v[V / 1µV]	
		Specifies the input/output level with dBm unit	ALVL1 @DBM	ALVL1? DBM	@ [dBm / 0.1dBm]	
		Specifies the input/output level with current selected unit.	ALVL1 Q (or ALVL1 v)	ALVL1?	ℓ (or v)	
	Signal	Tone	ASIG1 TONE	ASIG1?	TONE	
	-	Noise(ITU-T G.227)	ASIG1 G227	ASIG1?	G227	
		Noise(White)	ASIG1 WHITE	ASIG1?	WHITE	
	Level Relative	On	ALVL1RL ON	ALVL1RL?	ON	
		Off	ALVL1RL OFF	ALVL1RL?	OFF	
	Relative Value	011		ALVL1RLV?	ℓ[dB / 0.1dB]	
	Oscillator Switch	On	AOUT1 ON	AOUT1?	QN	
	Oscillator Switch		AOUT1 OFF		OFF	
		Off		AOUT1?		
AF Oscillator 2	Frequency	Specifies the input/output level	AFREQ2 f	AFREQ2?	f[Hz / 0.1Hz]	
	Level	.with V unit.	ALVL2 vV(V,MV,UV)	ALVL2? V	v[V / 1µV]	
		Specifies the input/output level with dBm unit. Specifies the input/output level	ALVL2 @DBM	ALVL2? DBM	ℓ [dBm / 0.1dB]	
		with current selected unit.	ALVL2 Q (or ALVL2 v)		ℓ (or v)	
	Signal	Tone	ASIG2 TONE	ASIG2?	TONE	
		Noise(ITU-T G.227)	ASIG2 G227	ASIG2?	G227	
		Noise(White)	ASIG2 WHITE	ASIG2?	WHITE	
	Level Relative	On	ALVL2RL ON	ALVL2RL?	ON	
		Off	ALVL2RL OFF	ALVL2RL?	OFF	
	Relative Value			ALVL2RLV?	ℓ [dB / 0.1dB]	
	Oscillator Switch	On	AOUT2 ON	AOUT2?	ON	
		Off	AOUT2 OFF	AOUT2?	OFF	

	Section 2 Device Messages							
class Function Function details	Intermediate class	Function	Function details	-				

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Measure Result	Status			MSTAT?	n	
	RF Frequency			RFFREQ?	f[Hz / 0.01Hz]	
	RF Frequency Error			RFFREQERR?	f[Hz / 0.01Hz]	
	RF Freq. Error ppm			RFFREQERRPPM?	m[ppm / 0.0001ppm]	
	RF Power			RFPWR? W	w[W / 1pW]	
				RFPWR? DBM	ℓ [dBm / 0.01dB]	
		Relative Value		RFPWRRLV?	ℓ [dB / 0.01dB]	
	Deviation	Demod. FM		RDEV?	f[Hz / 0.1Hz]	
		Demod. øM		RDEV?	r[rad / 0.0001rad]	
		Relative Value		RDEVRLV?	ℓ [dB / 0.01dB]	
	Deviation Readouts all the measurexd results.	Demod. FM		RDEVALL?	f[Hz / 0.1Hz]	*1
		Demod. øM		RDEVALL?	r[rad / 0.0001rad]	
	AF Level	Demod. FM		TALVL?	f[Hz / 0.1Hz]	
		Demod. øM		TALVL?	r[rad / 0.1rad]	
		Relative Value		TALVLRLV?	ℓ [dB / 0.01dB]	
	AF Level Readouts all the	Demod. FM		TALVLALL?	f[Hz / 0.1Hz]	*2
	measured results.	Demod. øM		TALVLALL?	r[rad / 0.0001rad]	
	Distortion			DSTN? DB	ℓ [dB / 0.01dB]	
				DSTN? PER	p[% / 0.01%]	
				DSTN?	Output with current selected unit.	
	AF Frequency			AFFREQ?	f[Hz / 0.001Hz]	
	Freq. Characteristics			FREQCHAR? n	f[dB / 0.01dB]	*3

*1:

RDEVALL? command (which readouts all the measured results of the Deviation) outputs the measured results of the (P-P)/2, +P, -P, RMS, (P-P)/2 Hold, +P Hold, and -P Hold, in this order with commas for these data separation. Output format is shown below, where one data is indicated with 7 characters. Example 1: Outputs with kHz unit. (One digit under decimal point) "10000.0, 1000.0, 100.0, 10.0, 1.0, 12.3, 123.4, 1234.5" Example 2: Outputs with rad unit. (Four digits under decimal point) "10.0000, 1.0000, 0.1000, 0.0100, 0.0001, 0.0003, 0.1234, 1.2345"

*2:

TALVLALL? command (which readouts all the measured results of the AF Level) outputs the 8 types of the measured results, depending on the combination of the Filter and De-emphasis.

This command outputs the measured results of the ITU-T/750 μ s, C-MES-SAGE/750 μ s, 6 kHz BPF/750 μ s, Off/750 μ s, ITU-T/Off, C-MESSAGE/Off, 6 kHz BPF/Off, and Off/Off, in this order with commas for these data separation.

Output format is shown below, where one data is indicated with 8 characters. Example 1: Outputs with Hz unit. (One digit under decimal point) "100000.0, 10000.0, 1000.0, 10.0, 1.0, 12.3, 123.4, 1234.5" Example 2: Outputs with rad unit. (Four digits under decimal point) "100.0000, 10.0000, 1.0000, 0.1000, 0.0100, 0.0003, 0.1234, 1.2345"

*3

FREQCHAR? command (which readouts the measured results of the frequency characteristics) performs FFT of the demodulated AF signal, and outputs the frequency characteristics (from 50 Hz to 10 kHz, in 50 Hz steps, with the reference of the data at 1 kHz).

When inputing this command, specify multiple integer values of n (range: 1 to 200) which are integer-type parameters to determine the measurement frequencies.

The relation between n and the measurement frequency (f) is as follows: f = 50 n (n: 1 to 200)

Section 2 Device Messages

2.5.5.3 TX Measure with SG command

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Storage Mode	Storage Mode	Normal	STRG NRM	STRG?	NRM	
		Average	STRG AVG	STRG?	AVG	
	Average On		VAVG ON			
			VAVG 1			
			KSG			
	Average Off		VAVG OFF			
			VAVG 0			
			KSH			
A	Average Count		AVR n	AVR?	n	
			VAVG n	VAVG?	n	
RF Power	Adjust Range		ADJRNG			
	Manual Calibration		PWRCAL			
_	Calibration Cancel		CALCANCEL			
	Power Meter Range	Range Up	PMRNG UP			
		Range Down	PMRNG DN			
	Power Meter Range	40.0dBm	PRNG5			
	(without Parameter)	30.0dBm	PRNG4			
		20.0dBm	PRNG3			
		10.0dBm	PRNG2			
	Power Meter Zero Set		ZEROSET			
	Set Relative		RFPWRSRL			
Deviation	Demod.	FM	DDMOD FM	DDMOD?	FM	
		øM	DDMOD PM	DDMOD?	PM	
	Detect Mode	(P-P)/2	DETMD PP	DETMD?	PP	
		+P	DETMD +P	DETMD?	+P	
		-P	DETMD –P	DETMD?	–P	
		RMS	DETMD RMS	DETMD?	RMS	
		(P-P)/2 Hold	DETMD PPH	DETMD?	PPH	
		+P Hold	DETMD +PH	DETMD?	+PH	
		–P Hold	DETMD –PH	DETMD?	–PH	
	High Pass Filter	300Hz	DHPF 3ØØ	DHPF?	3ØØ	
		50Hz	DHPF 5Ø	DHPF?	5Ø	
		Off	DHPF OFF	DHPF?	OFF	
	Low Pass Filter	3kHz	DLPF 3	DLPF?	3	
		15kHz	DLPF 15	DLPF?	15	
		Off	DLPF OFF	DLPF?	OFF	
	Relative On/Off	On	RDEVRL ON	RDEVRL?	ON	
		Off	RDEVRL OFF	RDEVRL?	OFF	

2.5 Device Message List

Intermedi class		Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
AF Level/		Filter	ITU-T P.53	AFLT P53	AFLT?	P53	
Distortion			C-MESSAGE	AFLT CMESS	AFLT?	CMESS	
			6kHz BPF	AFLT BPF	AFLT?	BPF	
			Off	AFLT OFF	AFLT?	OFF	
		High Pass Filter	400Hz	AHPF 4ØØ	AHPF?	4ØØ	
			Off	AHPF OFF	AHPF?	OFF	
		De-emphasis	750µs	ADEMP 75Ø	ADEMP?	75Ø	
			Off	ADEMP OFF	ADEMP?	OFF	
		Distortion Unit	dB	ADSTU DB	ADSTU?	DB	
			%	ADSTU PER	ADSTU?	PER	
		AF Level Set Relative		TALVLSRL			
		Range	30V	ARNG 3Ø	ARNG?	3Ø	
		C C	4V	ARNG 4	ARNG?	4	
			400mV	ARNG 4ØØM	ARNG?	4ØØM	
			40mV	ARNG 4ØM	ARNG?	4ØM	
RF Freque	ency	Channel		CHAN n	CHAN?	n[ch / 1ch]	
	TX Measure Frequency		TXFREQ f	TXFREQ?	f[Hz / 1Hz]		
	RX Measure Frequency		RXFREQ f	RXFREQ?	f[Hz / 1Hz]		
	Incremental Step Value		FINC f	FINC?	f[Hz / 1Hz]		
		RX Freq. Step Up		FRS UP			
				UFR	 		
		RX Freq. Step Down		FRS DN			
				DFR		· · · · · · · ·	
		Relative On/Off	On	RXFREQRL ON	RXFREQRL?	ON	
			Off	RXFREQRL OFF	RXFREQRL?	OFF	
		Relative Value			RXFREQRLV?	f[Hz / 1Hz]	
RF Level	ΤX	TX Measure Ref Level		RFLVL Q	RFLVL?	ℓ [dBm / 1dBm]	
	RX	RX Measure	Specifies the input level with dBm unit.		OLVL?	ℓ[dBm/1dB]	Unit can be change
		Output Level	Specifies the input level with dBu unit.	OLVL ℓDBU	OLVL?	ℓ [dBμ/0.1dBμ]	by inputing the se value with a characte
			Specifies the input level with current selected unit.	OLVL Q	OLVL?	Q	string of unit.
		Incremental Step Value		LINC Q	LINC?	ℓ[dB / 0.1dB]	
		RF Level Step Up		OLS UP			
				UOL			
		RF Level Step Down		OLS DN			
			DOL				
	Unit EMF/TERM	EMF	RFUT EMF	RFUT?	EMF		
		TERM	RFUT TERM	RFUT?	TERM		
		RF Level Rel. On/Off	On	OLVLRL ON	OLVLRL?	ON	
			Off	OLVLRL OFF	OLVLRL?	OFF	
		Relative Value			OLVLRLV?	ℓ[dB / 0.1dB]	
		RF Level On/Off	On	RRLVL ON	RRLVL?	ON	
			Off	RRLVL OFF	RRLVL?	OFF	

Section 2 Device Messages

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
AF Oscillator 1	Frequency		AFREQ1 f	AFREQ1?	f[Hz / 0.1Hz]	
(Mod.)	Deviation		ADEV1 f	ADEV1?	f[Hz / 0.1Hz]	
	Oscillator Switch	On	AOUT1 ON	AOUT1?	ON	
		Off	AOUT1 OFF	AOUT1?	OFF	
AF Oscillator 2	Frequency		AFREQ2 f	AFREQ2?	f[Hz / 0.1Hz]	
(Mod./AF)	Deviation		ADEV2 f	ADEV2?	f[Hz / 0.1Hz]	
	Level	Specifies the input level with dBm unit.	ALVL2 vV(V,MV,UV)	ALVL2? V	v[V / 1µV]	
		Specifies the input level with dBu unit.	ALVL2 Q DBM	ALVL2? DBM	ℓ [dBm / 0.1dB]	
		Specifies the input level with current selected unit.	ALVL2 Q (or ALVL2 v)	ALVL2?	ℓ (or v)	
	Signal	Tone	ASIG2 TONE	ASIG2?	TONE	
		Noise(ITU-T G.227)	ASIG2 G227	ASIG2?	G227	
		Noise(White)	ASIG2 WHITE	ASIG2?	WHITE	
	Output For Mod/AF	Mod.	AOPF2 MOD	AOPF2?	MOD	
		AF	AOPF2 AF	AOPF2?	AF	
	Oscillator Switch	On	AOUT2 ON	AOUT2?	ON	
		Off	AOUT2 OFF	AOUT2?	OFF	
External Oscillator	Deviation		ADEVX f	ADEVX?	f[Hz / 0.1Hz]	
(Mod.)	Oscillator Switch	On	AOUTX ON	AOUTX?	ON	
. ,		Off	AOUTX OFF	AOUTX?	OFF	
Measure Result	Status			MSTAT?	n	
	RF Frequency			RFFREQ?	f[Hz / 0.01Hz]	
	RF Frequency Error			RFFREQERR?	f[Hz / 0.01Hz]	
	RF Freq. Error ppm			RFFREQERRPPM?	m[ppm / 0.0001ppm]	
	RF Power			RFPWR? W	w[W / 1pW]	
				RFPWR? DBM	ℓ [dBm / 0.01dB]	
		Relative Value		RFPWRRLV?	ℓ [dB / 0.01dB]	
	Deviation	Demod. FM		RDEV?	f[Hz / 0.1Hz]	
		Demod. øM		RDEV?	r[rad / 0.0001rad]	
		Relative Value		RDEVRLV?	@[dB / 0.01dB]	
	Deviation	Demod. FM		RDEVALL?	f[Hz / 0.1Hz]	*1
	Readouts all the measured results.	Demod. øM		RDEVALL?	r[rad / 0.0001rad]	
	AF Level	Demod. FM		TALVL?	f[Hz / 0.1Hz]	
		Demod. øM		TALVL?	r[rad / 0.1rad]	
		Relative Value		TALVLRLV?	ℓ [dB / 0.01dB]	
	AF Level	Demod. FM		TALVLALL?	f[Hz / 0.1Hz]	*2
	Readouts all the measured results.	Demod. øM		TALVLALL?	r[rad / 0.0001rad]	
	Distortion			DSTN? DB	ℓ [dB / 0.01dB]	
				DSTN? PER	p[% / 0.01%]	
				DSTN?	Output with current selected unit.	
	AF Frequency			AFFREQ?	f[Hz / 0.001Hz]	
	Freq. Characteristics			FREQCHAR? n	f[dB / 0.01dB]	*3

*1:

RDEVALL? command (which readouts all the measured results of the Deviation) outputs the measured results of the (P-P)/2, +P, –P, RMS, (P-P)/2 Hold, +P Hold, and –P Hold, in this order with commas for these data separation.

Output format is shown below, where one data is indicated with 7 characters. Example 1: Outputs with kHz unit. (One digit under decimal point) "10000.0, 1000.0, 100.0, 10.0, 1.0, 12.3, 123.4, 1234.5" Example 2: Outputs with rad unit. (Four digits under decimal point) "10.0000, 1.0000, 0.1000, 0.0100, 0.0001, 0.0003, 0.1234, 1.2345"

*2 :

TALVLALL? command (which readouts all the measured results of the AF Level) outputs the 8 types of the measured results, depending on the combination of the Filter and De-emphasis.

This command outputs the measured results of the ITU-T/750 μ s, C-MES-SAGE/750 μ s, 6 kHz BPF/750 μ s, Off/750 μ s, ITU-T/Off, C-MESSAGE/Off, 6 kHz BPF/Off, and Off/Off, in this order with commas for these data separation.

Output format is shown below, where one data is indicated with 8 characters. Example 1: Outputs with Hz unit. (One digit under decimal point) "100000.0, 10000.0, 1000.0, 10.0, 10.0, 12.3, 123.4, 1234.5"

Example 2: Outputs with rad unit. (Four digits under decimal point) "100.0000, 10.0000, 1.0000, 0.1000, 0.0100, 0.0003, 0.1234, 1.2345"

*3:

FREQCHAR? command (which readouts the measured results of the frequency characteristics) performs FFT of the demodulated AF signal, and outputs the frequency characteristics (from 50 Hz to 10 kHz, in 50 Hz steps, with the reference of the data at 1 kHz).

When inputing this command, specify multiple integer values of n (range: 1 to 200) which are integer-type parameters to determine the measurement frequencies.

The relation between n and the measurement frequency (f) is as follows:

f = 50 n (n: 1 to 200)

Section 2 Device Messages

2.5.6 RX Measure commands

• Program messages of the RX Measure command are valid on the RX Measure screen.

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Storage Mode	Storage Mode	Normal	STRG NRM	STRG?	NRM	
		Average	STRG AVG	STRG?	AVG	
	Average On		VAVG ON			
			VAVG 1			
			KSG			
	Average Off		VAVG OFF			
			VAVG 0			
			KSH			
	Average Count		AVR n	AVR?	n	
			VAVG n	VAVG?	n	
AF Level	Adjust Range		ADJRNG			
	Set Relative		AFLVLSRL			
	Range	Up	ALRNG UP			
		Down	ALRNG DN			
		30V	ARNG 3Ø	ARNG?	3Ø	
		4V	ARNG 4	ARNG?	4	
		400mV	ARNG 4ØØM	ARNG?	4ØØM	
		40mV	ARNG 4ØM	ARNG?	4ØM	
_	High Pass Filter	400Hz	AHPF 4ØØ	AHPF?	4ØØ	
		300Hz	AHPF 3ØØ	AHPF?	3ØØ	
		50Hz	AHPF 5Ø	AHPF?	5Ø	
		Off	AHPF OFF	AHPF?	OFF	
	Low Pass Filter	3kHz	ALPF 3	ALPF?	3	
		15kHz	ALPF 15	ALPF?	15	
		Off	ALPF OFF	ALPF?	OFF	
	Filter	ITU-T P.53	AFLT P53	AFLT?	P53	
		C-MESSAGE	AFLT CMESS	AFLT?	CMESS	
		6kHz BPF	AFLT BPF	AFLT?	BPF	
		OFF	AFLT OFF	AFLT?	OFF	
	AF Level Unit	dBm	ALUT DBM	ALUT?	DBM	
		V	ALUT V	ALUT?	V	
	Distortion Unit	dB	ADUT DB	ADUT?	DB	
		%	ADUT PER	ADUT?	PER	
RF Frequency	Channel		CHAN n	CHAN?	n[ch / 1ch]	
	RX Measure Frequency		RXFREQ f	RXFREQ?	f[Hz / 1Hz]	
	Incremental Step Value		FINC f	FINC?	f[Hz / 1Hz]	
	RX Freq. Step Up		FRS UP			
			UFR			
	RX Freq. Step Down		FRS DN			
			DFR			
	Relative On/Off	On	RXFREQRL ON	RXFREQRL?	ON	
		Off	RXFREQRL OFF	RXFREQRL?	OFF	
	Relative Value			RXFREQRLV?	f[Hz / 1Hz]	

2.5 Device Message List

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
RF Level	RX Measure	Specifies the input level with dBm unit.	OLVL Q DBM	OLVL?	ℓ [dBm/0.1dB]	Unit can be changed
	Output Level	Specifies the input level with dBu unit.	OLVL ℓDBU	OLVL?	ℓ [dBμ/0.1dB]	by inputing the set value with a character
		Specifies the input level with current selected unit.	OLVL Q	OLVL?	Q	string of unit.
	Incremental Step Value		LINC Q	LINC?	ℓ[dB / 0.1dB]	
	RF Level Step Up		OLS UP			
			UOL			
	RF Level Step Down		OLS DN			
			DOL			
	Unit EMF/TERM	EMF	RFUT EMF	RFUT?	EMF	
		TERM	RFUT TERM	RFUT?	TERM	
	RF Level Rel. On/Off	On	OLVLRL ON	OLVLRL?	ON	
		Off	OLVLRL OFF	OLVLRL?	OFF	
	Relative Value			OLVLRLV?	ℓ[dB / 0.1dB]	
	RF Level On/Off	On	RRLVL ON	RRLVL?	ON	
		Off	RRLVL OFF	RRLVL?	OFF	
AF Oscillator 1	Frequency		AFREQ1 f	AFREQ1?	f[Hz / 0.1Hz]	
(Mod.)	Deviation		ADEV1 f	ADEV1?	f[Hz / 0.1Hz]	
	Oscillator Switch	On	AOUT1 ON	AOUT1?	ON	
		Off	AOUT1 OFF	AOUT1?	OFF	
AF Oscillator 2	Frequency		AFREQ2 f	AFREQ2?	f[Hz / 0.1Hz]	
(Mod./AF)	Deviation		ADEV2 f	ADEV2?	f[Hz / 0.1Hz]	
	Level	Specifies the input/output level with V unit.	ALVL2 vV(V,MV,UV)	ALVL2? V	v[V / 1µV]	
		Specifies the input/output level with dBm unit.	ALVL2 Q DBM	ALVL2? DBM	Q [dBm / 0.1dB]	
		Specifies the input/output level with current selected unit.	ALVL2 $ \varrho \; (\text{or ALVL2 v})$	ALVL2?	ℓ (or v)	
	Signal	Tone	ASIG2 TONE	ASIG2?	TONE	
		Noise(ITU-T G.227)	ASIG2 G227	ASIG2?	G227	
		Noise(White)	ASIG2 WHITE	ASIG2?	WHITE	
	Output For Mod/AF	Mod.	AOPF2 MOD	AOPF2?	MOD	
		AF	AOPF2 AF	AOPF2?	AF	
	Oscillator Switch	On	AOUT2 ON	AOUT2?	ON	
		Off	AOUT2 OFF	AOUT2?	OFF	
External Oscillator	Deviation		ADEVX f	ADEVX?	f[Hz / 0.1Hz]	
(Mod.)	Oscillator Switch	On	AOUTX ON	AOUTX?	ON	
		Off	AOUTX OFF	AOUTX?	OFF	

Section 2	Device	Messages
-----------	--------	----------

Intermediate class	Function	Function details	Program	Msg Query Msg	Response Msg	Remarks
Measure Result	Status			MSTAT?	n	
	AF Level	dBm		AFLVL? DBM	ℓ [dBm / 0.01dBm]	*The input level with $100k\Omega$ is invalid.
		V		AFLVL? V	v[V / #.####E+##V]	
				AFLVL?	Output with current selected unit.	
		Relative Value		AFLVLRLV?	ℚ[dB / 0.01dB]	
	AF Level			AFLVLALL? DBM	ℓ [dBm / 0.01dB]	*1
	Readouts all the			AFLVLALL? V	v[V / 0.1µV]	
	measured results.			AFLVLALL?	Output with current selected unit.	
	AF SINAD			SINAD?	ℓ [dB / 0.01dB]	
	AF Distortion	dB		DSTN? DB	ℓ [dB / 0.01dB]	
		%		DSTN? PER	p[% / 0.01%]	
				DSTN?	Output with current selected unit.	
	AF Frequency			AFFREQ?	f[Hz / 0.001Hz]	
	Freq. Characteristics			FREQCHAR? n	f[dB / 0.01dB]	*2

*1:

AFLVLALL? command (which readouts all the measured results of the AF Level) outputs the 8 types of the measured results, depending on the combination of the Filter and De-emphasis.

This command outputs the measured results of the ITU-T/750 μ s, C-MES-SAGE/750 μ s, 6 kHz BPF/750 μ s, Off/750 μ s, ITU-T/Off, C-MESSAGE/Off, 6 kHz BPF/Off, and Off/Off, in this order with commas for these data separation.

Output format is shown below, where one data is indicated with 9 characters. Example 1: Outputs with dBm unit. (Two digits under decimal point)

"100000.00, 10000.00, 1000.00, 0.01, 1234.56, 123.45, -12.34, -0.10"

Example 2: Outputs with Volt unit. (Exponent form)

"1.234E+01,2.324E-03,5.325E-05,4.448E-06,1.568E+01,3.525E-04,4.256E-03,1.825E-02"

*2 :

FREQCHAR? command (which readouts the measured results of the frequency characteristics) performs FFT of the demodulated AF signal, and outputs the frequency characteristics (from 50 Hz to 10 kHz, in 50 Hz steps, with the reference of the data at 1 kHz).

When inputing this command, specify multiple integer values of n (range: 1 to 200) which are integer-type parameters to determine the measurement frequencies.

The relation between n and the measurement frequency (f) is as follows:

f = 50 n (n: 1 to 200)

2.5.7 AF Measure commands

• Program messages of the AF Measure command are valid on the AF Measure screen.

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
Storage Mode	Storage Mode	Normal	STRG NRM	STRG?	NRM	
		Average	STRG AVG	STRG?	AVG	
	Average On		VAVG ON			
			VAVG 1			
			KSG			
	Average Off		VAVG OFF			
			VAVG 0			
			KSH			
	Average Count		AVR n	AVR?	n	
			VAVG n	VAVG?	n	
AF Level	Adjust Range		ADJRNG			
	Set Relative		AFLVLSRL			
	Range	Up	ALRNG UP			
		Down	ALRNG DN			
		30V	ARNG 3Ø	ARNG?	3Ø	
		4V	ARNG 4	ARNG?	4	
		400mV	ARNG 4ØØM	ARNG?	4ØØM	
		40mV	ARNG 4ØM	ARNG?	4ØM	
	High Pass Filter	400Hz	AHPF 4ØØ	AHPF?	4ØØ	
		300Hz	AHPF 3ØØ	AHPF?	3ØØ	
		50Hz	AHPF 5Ø	AHPF?	5Ø	
		Off	AHPF OFF	AHPF?	OFF	
	Low Pass Filter	3kHz	ALPF 3	ALPF?	3	
		15kHz	ALPF 15	ALPF?	15	
		Off	ALPF OFF	ALPF?	OFF	
	Filter	ITU-T P.53	AFLT P53	AFLT?	P53	
		C-MESSAGE	AFLT CMESS	AFLT?	CMESS	
		6kHz BPF	AFLT BPF	AFLT?	BPF	
		OFF	AFLT OFF	AFLT?	OFF	
	AF Level Unit	dBm	ALUT DBM	ALUT?	DBM	
		V	ALUT V	ALUT?	V	
	Distortion Unit	dB	ADUT DB	ADUT?	DB	
		%	ADUT PER	ADUT?	PER	

Section 2 Device Messages

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
AF Oscillator 1	Frequency		AFREQ1 f	AFREQ1?	f[Hz / 0.1Hz]	
	Level	Specifies the input/output level with V unit.	ALVL1 vV(V,MV,UV)	ALVL1? V	v[V / 1µV]	
		Specifies the input/output level with dBm unit.	ALVL1 ℓ DBM	ALVL1? DBM	ℓ [dBm / 0.1dB]	
		Specifies the input/output level with current selected unit.	ALVL1 Q (or ALVL1 v)	ALVL1?	ℓ (or v)	
	Signal	Tone	ASIG1 TONE	ASIG1?	TONE	
		Noise(ITU-T G.227)	ASIG1 G227	ASIG1?	G227	
		Noise(White)	ASIG1 WHITE	ASIG1?	WHITE	
	Level Relative	On	ALVL1RL ON	ALVL1RL?	ON	
		Off	ALVL1RL OFF	ALVL1RL?	OFF	
	Relative Value			ALVL1RLV?	ℓ [dB / 0.1dB]	
	Oscillator Switch	On	AOUT1 ON	AOUT1?	ON	
		Off	AOUT1 OFF	AOUT1?	OFF	
AF Oscillator 2	Frequency		AFREQ2 f	AFREQ2?	f[Hz / 0.1Hz]	
	Level	Specifies the input/output level with V unit.	ALVL2 vV(V,MV,UV)	ALVL2? V	v[V / 1µV]	
		Specifies the input/output level with dBm unit.	ALVL2 Q DBM	ALVL2? DBM	ℓ [dBm / 0.1dB]	
		Specifies the input/output level with current selected unit.	ALVL2 Q (or ALVL2 v)	ALVL2?	₽ (or v)	
	Signal	Tone	ASIG2 TONE	ASIG2?	TONE	
		Noise(ITU-T G.227)	ASIG2 G227	ASIG2?	G227	
		Noise(White)	ASIG2 WHITE	ASIG2?	WHITE	
	Level Relative	On	ALVL2RL ON	ALVL2RL?	ON	
		Off	ALVL2RL OFF	ALVL2RL?	OFF	
	Relative Value			ALVL2RLV?	ℓ [dB / 0.1dB]	
	Oscillator Switch	On	AOUT2 ON	AOUT2?	ON	
		Off	AOUT2 OFF	AOUT2?	OFF	
Measure Result	Status			MSTAT?	n	
	AF Level	dBm		AFLVL? DBM	ℓ [dBm / 0.01dB]	*The input leve with 100kΩ is
		V		AFLVL? V	v[V / 0.1µV]	invalid.
				AFLVL?	Output with current selected unit.	
		Relative Value		AFLVLRLV?	ℓ [dB / 0.01dB]	
	AF Level			AFLVLALL? DBM	ℓ [dBm / 0.01dB]	*1
	Readouts all the measured results.			AFLVLALL? V	v[V / 0.1µV]	
				AFLVLALL?	Output with current selected unit.	
	AF Distortion	dB		DSTN? DB	ℓ [dB / 0.01dB]	
		%		DSTN? PER	p[% / 0.01%]	
				DSTN?	Output with current selected unit.	
	AF Frequency			AFFREQ?	f[Hz / 0.001Hz]	
	Freq. Characteristics			FREQCHAR? n	f[dB / 0.01dB]	*2

*1:

AFLVLALL? command (which readouts all the measured results of the AF Level) outputs the 8 types of the measured results, depending on the combination of the Filter and De-emphasis.

This command outputs the measured results of the ITU-T/750 μ s, C-MES-SAGE/750 μ s, 6 kHz BPF/750 μ s, Off/750 μ s, ITU-T/Off, C-MESSAGE/Off, 6 kHz BPF/Off, and Off/Off, in this order with commas for these data separation.

Output format is shown below, where one data is indicated with 9 characters. Example 1: Outputs with dBm unit. (Two digits under decimal point)

"100000.00, 10000.00, 1000.00, 0.01, 1234.56, 123.45, -12.34, -0.10"

Example 2: Outputs with Volt unit. (Exponent form)

"1.234E+01,2.324E-03,5.325E-05,4.448E-06,1.568E+01,3.525E-04,4.256E-03,1.825E-02"

*2 :

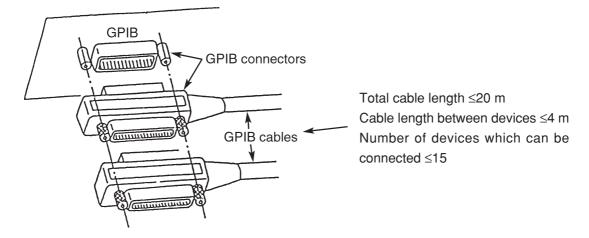
FREQCHAR? command (which readouts the measured results of the frequency characteristics) performs FFT of the demodulated AF signal, and outputs the frequency characteristics (from 50 Hz to 10 kHz, in 50 Hz steps, with the reference of the data at 1 kHz).

When inputing this command, specify multiple integer values of n (range: 1 to 200) which are integer-type parameters to determine the measurement frequencies.

The relation between n and the measurement frequency (f) is as follows:

f = 50 n (n: 1 to 200)

Section 3 Setup


This section describes the RS-232C/GPIB connections to external devices and setting the remote-control interface of the MT8801C.

3.1	Connecting Devices with GPIB Cables	3-2
3.2	Setting GPIB Interface Conditions	3-3
3.3	Connection of RS-232C Interface Signal	3-4
3.4	Setting RS-232C Interface Conditions	3-5
3.5	Setting the Items Relating to Remote Control and	
	Panel Key Control	3-6
3.5.1	Remote control and panel control keys	3-6
3.5.2	Remote control status	3-6

3.1 Connecting Devices with GPIB Cables

The rear panel has connectors for connecting GPIB cables.

Up to 15 devices, including the controller, can be connected to one system. Connect devices under the conditions described to the right of the diagram below.

Mounting and dismounting of the GPIB cable must be done after turning off the power switch and pulling out the power cord from the socket. If the power remains on, only signal common line may disconnected before the other lines, then AC leak voltages are applied to the ICs, and there is a possibility that components such as ICs in the interface unit will be damaged.

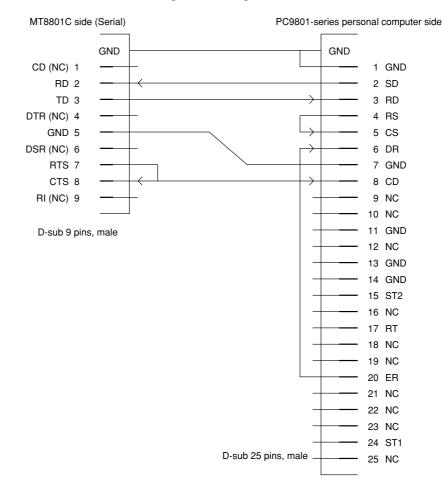
The GPIB cables must be connected before the power is turned on.

3.2 Setting GPIB Interface Conditions

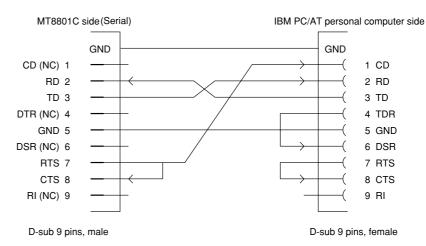
Set the GPIB interface on the Instrument Setup screen at the front panel. Set the following items:

1) Interface: Connect to Controller (Initial value: GPIB)

2) GPIB: Address (Initial value: 01)


An example of the setting when the GPIB interface is set with the GPIB address 03 is given below.

Step	Key operation	Explanation		
(Swite	(Switching to the Instrument Setup screen)			
1.	[Main Func on off] F6	Sets the Main Func on to display the main menu.		
2.	Next Menu[◀]	Sets the Instrument Setup mode.		
	[Instrument Setup] F2	Displays the Instrument Setup screen.		
(Selecting the remote control interface)				
3.	Cursor [^] [~]	Uses these cursor keys to select "Interface Connect to Controller.".		
4.	[Set]	Opens the setup window.		
5.	Cursor [^] [~]	Selects GPIB on the setting window.		
6.	[Set]	Closes the setting window and determines the set value.		
(Setting the GPIB address)				
7.	Cursor [~] [~]	Use these cursor keys to select a GPIB address.		
8.	[Set]	Opens the setup window.		
9.	[0] [3] [Set]	Set the GPIB address to 03.		


3.3 Connection of RS-232C Interface Signal

Connection of RS-232C interface signal between the MT8801C and a personal computer is shown below.

• Connection to PC98-series personal computer (NEC)

Connection to IBM PC/AT personal computer

3.4 Setting RS-232C Interface Conditions

Set the RS-232C interface on the Instrument Setup screen at the front panel. Set the following items:

1) Interface: Connect to Controller (Initial value: GPIB)

2) RS-232C: Baud Rate (Initial value: 2400) Parity (Initial value: Even) Data Bit (Initial value: 8 bits)

Stop Bit (Initial value: 1 bit)

Set the RS-232C interface conditions, as desribed below.

Step	Key operation	Explanation	
(Swite	ching to the Instrument Setup	screen)	
1.	[Main Func On/Off] F6	Sets the Main Func on to display the main menu.	
2.	Next Menu [<]	Sets the Instrument Setup mode.	
	[Instrument Setup] F2	Displays the Instrument Setup screen.	
(Selec	ting the remote control interf	face)	
3.	Cursor [~] [~]	These cursor keys are used to select "Interface Connect to Controller."	
4.	[Set]	Opens the setup window.	
5.	Cursor [~] [~]	Selects RS-232C on the setting window.	
6.	[Set]	Closes the setting window and establishes the set value.	
(Settir	ng the RS-232C interface)		
7.	Cursor [~] [~]	Uses these cursor keys to select the setting item Baud rate.	
8.	[Set]	Opens the setup window.	
9.	[~] [~] [Set]	Uses these cursor keys to select a Baud rate value (9600 [bps] etc.).	
10.	10. $[\frown] [\frown]$ Sets other interface conditions in the same way.		

3.5 Setting the Items Relating to Remote Control and Panel Key Control

3.5.1 Remote control and panel control keys

The keys and lamps described in this paragraph are assigned on the front panel as exclusive keys and lamps.

1) REMOTE lamp and LOCAL key

The REMOTE lamp indicates that the MT8801C is controlled remotely via the GPIB interface. When the MT8801C is controlled remotely from an external controller via the GPIB interface on the rear panel, the REMOTE lamp lights. While the REMOTE lamp is on, key entry and rotary encoder entry from the front panel are disabled. The LOCAL key is used to cancel the remote control status of the GPIB interface. When the LOCAL key is pressed, the REMOTE lamp goes off and key entry and rotary encoder entry from the front panel are enabled.

2) PANEL LOCK key

The PANEL LOCK key is used to enable and disable key entry and rotary encoder entry from the front panel. Use the PANEL LOCK key to prevent an operation error on the front panel for automatic measurement or status holding. When the panel is locked, the green lamp on the PANEL LOCK key lights.

3.5.2 Remote control status

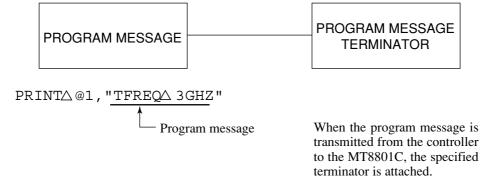
If the MT8801C is controlled remotely, the REMOTE lamp on the left of the front panel lights. While the REMOTE lamp is on, key entry and rotary encoder entry from the front panel are disabled. To change from the remote control to front panel entry status, execute the following steps:

- 1) Halt the remote control.
- 2) If the REMOTE lamp is on, press the LOCAL key to cancel the REMOTE status.

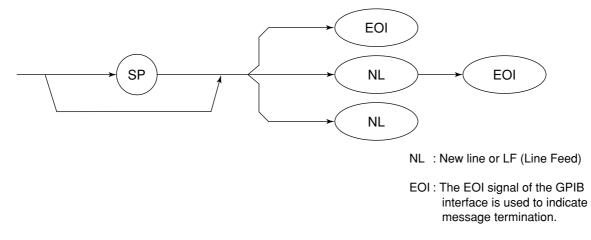
Section 4 Device Message Format

This section describes the format of the device messages transmitted between a controller and the MT8801C via the GPIB system.

4.1	General Description	4-2
-----	---------------------	-----

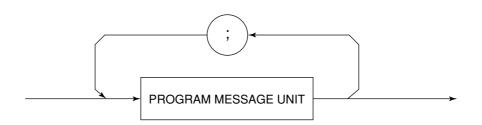

- 4.2 Program Message Format..... 4-2
- 4.3 Response Message Format 4-6

4.1 General Description


The device messages are data messages that are transmitted between the controller and devices. There are two types of data messages:program messages output from the controller to the MT8801C, and response messages input from the MT8801C by the controller. There are also two types of program commands and program queries in the program message. The program command is used to set this instrument's parameters and to instruct it to execute processing. The program query is used to query the values of parameters and measured results.

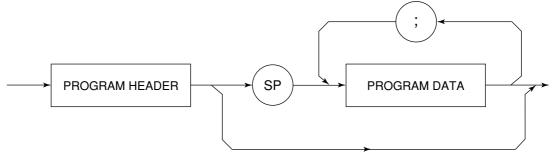
4.2 Program Message Format

To transfer program messages from the controller to the MT8801C using the PRINT statement, the program message formats are defined as follows:

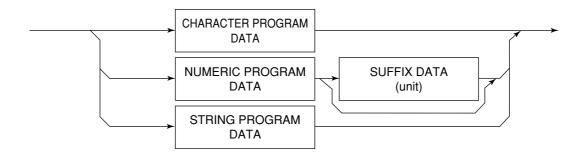


(1) PROGRAM MESSAGE TERMINATOR

Cartridge Return (CR) is ignored, and is not processed as a terminator.


(2) PROGRAM MESSAGE

Multiple commands can be output sequentially by concatenating each of them with a semicolon.

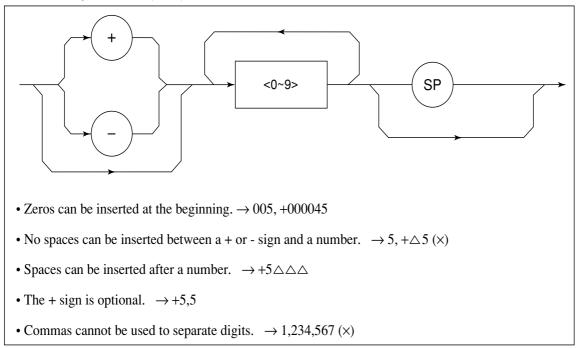

<Example> PRINT \triangle @1, "TFREQ \triangle 1GHZ; RFLVL \triangle UP"

(3) PROGRAM MESSAGE UNIT

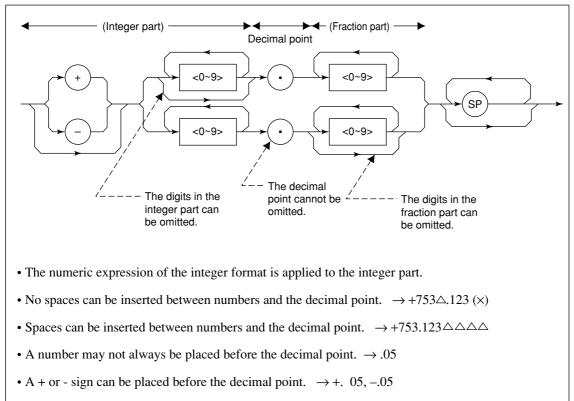
- Each IEEE488.2 common command has a leading asterisk "*" that is always placed before the program header.
- The program query has a trailing question mark "?" that is always added at the end of the program header.

(4) PROGRAM DATA

(5) CHARACTER PROGRAM DATA

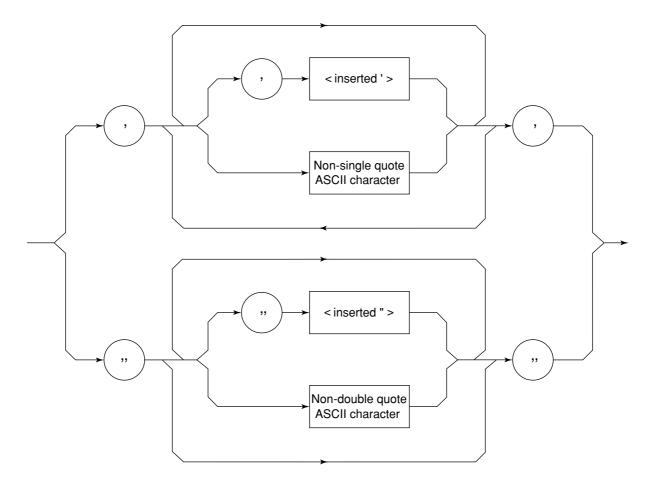

Character program data consists of uppercase alphabetic characters from A to Z, lowercase alphabetic characters from a to z, the underline "_", and the numbers 0 to 9. These characters can be used in specified combinations.

<Example> PRINT \triangle @1, \triangle "MKR \triangle NRM" Sets Marker to Normal.


(6) NUMERIC PROGRAM DATA

Numeric program data has two types of formats:integer format (NR1) and fixed-point real number format (NR2).

<Integer Format (NR1)>



<Fixed-Point (real number) Format (NR2)>

• A number can end with a decimal point. \rightarrow 12.

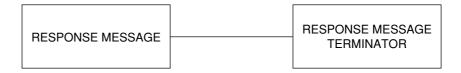
(7) STRING PROGRAM DATA

• Both ends of string program data must have a pair of double quotation marks "____".

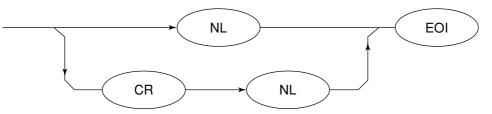
PRINT @1, "TITLE 'MT8801C'"

A single quotation mark used within the character string must be repeated as shown in ' or ".

PRINT @1, "TITLE 'MT8801C''NOISE MEAS''' "

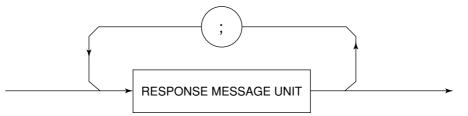

Executing TITLE results in MT8801C 'NOISE MEAS'.

Note:

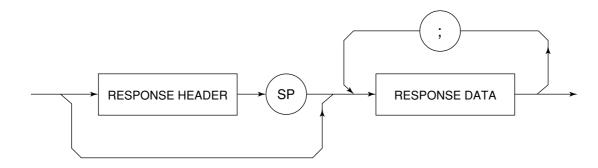

To use the double quotation mark " in the PRINT statement, specify CHR\$ (&H22).

4.3 Response Message Format

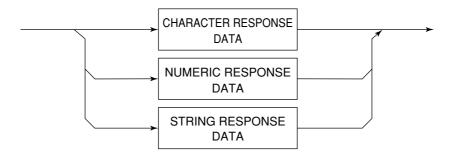
To transfer responses messages from the MT8801C to the controller by using the INPUT statement, the response message formats are defined as follows:



(1) RESPONSE MESSAGE TERMINATOR

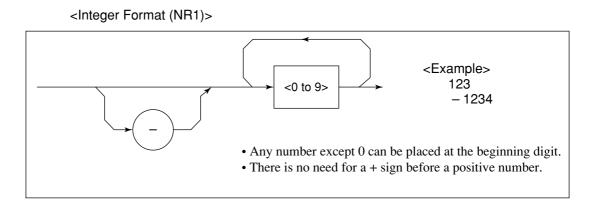

The response message terminator to be used depends on the TRM command.

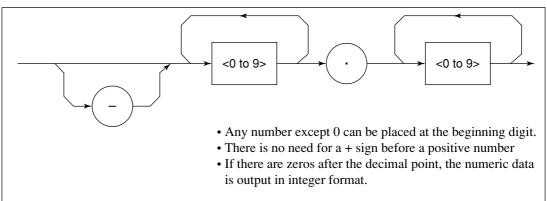
(2) RESPONSE MESSAGE



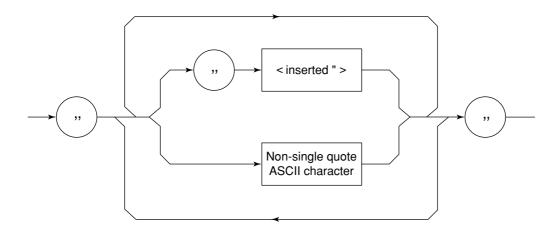
When a query is sent by the PRINT statement with one or more program queries, the response message also consists of one or more response message units.

(3) Normal RESPONSE MESSAGE UNIT


(4) RESPONSE DATA


(5) CHARACTER RESPONSE DATA

Character response data consists of uppercase alphabetic characters from A to Z, lowercase alphabetic characters from a to z, the underline "_", and the numbers 0 to 9. These characters can be used in specified combinations.


(6) NUMERIC RESPONSE DATA

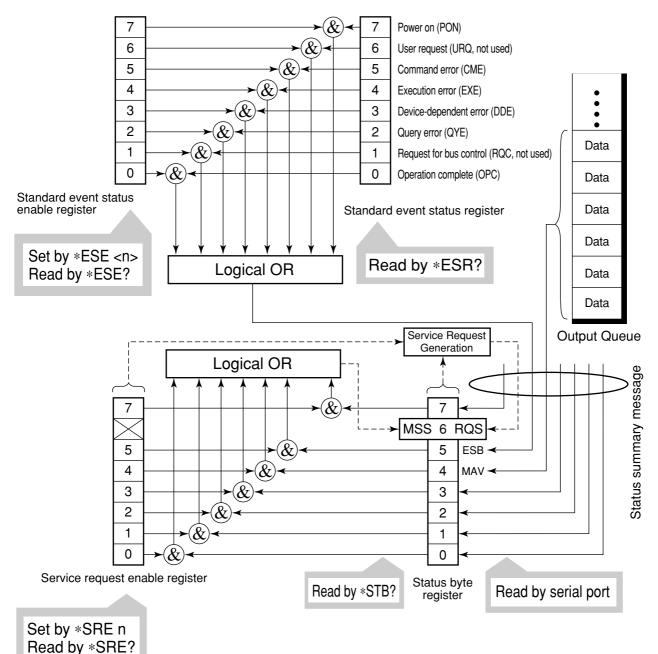
(7) STRING RESPONSE DATA

String response data is output as an ASCII character string, which is enclosed with double quotation marks.

Section 5 Status Messages

This section describes MT8801C status messages, their data structure and models, and explains the techniques for synchronizing the controller and the MT8801C. To obtain more detailed status information, the IEEE488.2 standard has more common commands and common queries than the IEEE488.1 standard.

The Status Byte (STB) sent to the controller is based on the IEEE488.1 standard. The bits comprising it are called a status summary message because they represent a summary of the current data contained in registers and queues.


The following pages explain the status summary message and structure of status data that constitutes the status summary message bits, as well as techniques for synchronizing the MT8801C and controller, which use these status messages.

These functions are used by an external controller with the GPIB interface bus. Almost functions can be used by an external controller with the RS-232C interface.

5.1	IEEE4	88.2 Standard Status Model 5-2
5.2	Status	Byte (STB) Register 5-4
	5.2.1	ESB and MAV summary messages 5-4
	5.2.2	Device-dependent summary messages 5-5
	5.2.3	Reading and clearing the STB register 5-6
5.3	Enabli	ng the Service Request (SRQ) 5-8
5.4	Standa	ard Event Status Register 5-9
	5.4.1	Bit definition of standard event status
		register 5-9
	5.4.2	Query error details 5-10
	5.4.3	Reading, writing to and clearing the standard
		event status register 5-11
	5.4.4	Reading, writing to and clearing the standard
		event status enable register 5-11
5.5	5.5 Extended Event Status Register 5	
	5.5.1	Bit definition of END event status register 5-13
	5.5.2	Bit definition of ERR event status register 5-14
	5.5.3	Reading, writing to and clearing the extended
		event status register 5-15
	5.3.4	Reading, writing to and clearing the extended
		event status enable register 5-15
5.6	6 Techniques for Synchronizing the MT8801C with	
	a Cont	troller 5-16
	5.6.1	Wait for SWP or TS command termination 5-16
	5.6.2	Wait for response after *OPC? query is sent 5-17
	5.6.3	Wait for service request after *OPC is sent 5-18
	5.6.4	Wait for status generation of the status
		register 5-19
	5.6.5	Wait for service request issuance from
		the status register 5-20

5.1 IEEE488.2 Standard Status Model

The diagram below shows the standard model for the status data structure stipulated in the IEEE488.2 standard.

Standard Status Model Diagram

The IEEE488.1 status byte is used in the status model. This status byte is composed of seven summary message bits given from the status data structure. To create the summary message bits, there are two models for the data structure:the register model and the queue model.

Register model	Queue model
The register model consists of the two registers used for recording	The queue in the queue model
events and conditions encountered by a device. These two registers	is for sequentially recording the
are the Event Status Register and Event Status Enable Register. When	waiting status values and data.
the result of the AND operation of both register contents is not 0, the	The queue structure is such that
corresponding bit of the status bit becomes 1.In other cases, it	the relevant bit is set to 1 when
becomes 0.And, when the result of their Logical OR is 1, the summary	there is data in it and 0 when it
message bit also becomes 1.If the logical OR result is 0, the summary	is empty.
message bit also becomes 0.	

In IEEE488.2, there are three standard models for status data structure, two register models and one queue model, based on the register model and queue model explained above. They are:

[1] Standard Event Status Register and Standard Event Status Enable Register

- [2] Status Byte Register and Service Request Enable Register
- [3] Output Queue

Standard Event Status Register	Status Byte Register	Output Queue
The Standard Event Status Register	The Status Byte Register is a regis-	The Output Queue has
has the structure of the previously	ter in which the RQS bit and the	the structure of the
described register model. In this regis-	seven summary message bits from	queue model mentioned
ter, bits are set for eight types of stand-	the status data structure can be set.	above. Status Byte Reg-
ard events encountered by a device.	It is used together with the Service	ister bit 4 (DIO5) is set
[1] Power on, [2] User request,	Request Enable Register. When	as a summary message
[3] Command error, [4] Execution	the result of the OR operation of	for Message Available
error, [5] Device-dependent error,	both register contents is not 0,	(MAV) to indicate that
[6] Query error, [7] Request for bus	SRQ goes ON. To indicate this,	there is data in the out-
control and [8] Operation complete.	bit 6 of the Status Byte Register	put buffer.
The logical OR output bit is represent-	(DIO7) is reserved by the system	
ed by Status Byte Register bit 5	as the RQS bit, which indicates a	
(DIO6) as a summary message for the	service request for the external con-	
Event Status Bit (ESB).	troller. The mechanism of SRQ	
	conforms to the IEEE488.1 stand-	
	ard.	

5.2 Status Byte (STB) Register

The STB register consists of device STB and RQS (or MSS) messages. The IEEE488.1 standard defines the method of reporting STB and RQS messages, but not the setting and clearing of protocols or the meaning of STB. The IEEE488.2 standard defines the device status summary message and the Master Summary Status (MSS) which is sent to bit 6 together with STB in response to an *STB? common query.

5.2.1 ESB and MAV summary messages

The following describes the ESB and MAV summary messages.

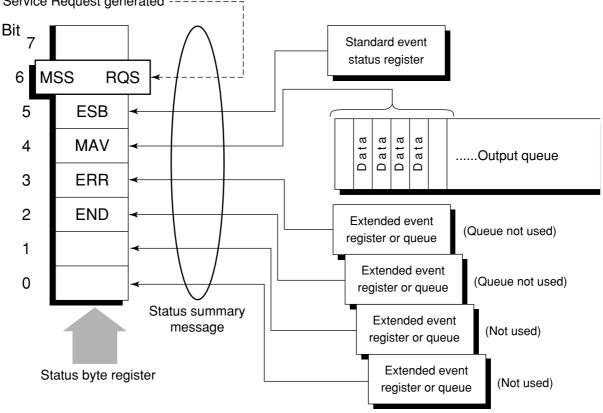
(1) ESB summary messages

The ESB (Event Summary Bit) summary message is a message defined by IEEE488.2, and is represented by bit 5 of the STB register. This bit indicates whether at least one of the events defined in IEEE488.2 has occurred when the service request enable register is set to enable events after the final reading or clearing of the standard event register.

The ESB summary message bit becomes 1 when the setting permits events to occur if any of the events recorded in the standard event status register becomes 1. The ESB summary bit becomes true when the setting permits events to occur if any of the events registered in the standard event status register is true. Conversely, it is false if none of the recorded events occurs even if events are set to occur.

This bit becomes FALSE (0) when the ESR register is read by the *ESR? query and the ESR register is cleared by the *CLS command.

(2) MAV summary messages


The MAV summary message is a message defined in IEEE488.2 and represented by bit 4 in the STB register. This bit indicates whether the output queue is empty. The MAV summary message bit is set to 1 (true) when a device is ready to receive a request for a response message from the controller and to 0 (false) when the output queue is empty. This message is used to synchronize the exchange of information with the controller. For example, this message can be used to make the controller wait until MAV is true after it sends a query command to the device. While the controller is waiting for a response from thedevice, it can process other jobs. Reading the output queue without first checking MAV delay all system bus operations until the device responds.

5.2.2 Device-dependent summary messages

The IEEE488.2 standard specifies that bits 7 (DIO8) and 3 (DIO4) to 0 (DIO1) of the status byte register can be used as status register summary bits, or to indicate that there is data in a queue.

Device-dependent summary messages have the respective status data structures of the register model or the queue model. Thus, the status data structure may be either the register to report events and status in parallel or the queue to report conditions and status in sequence. The summary bit represents a summary of the current status of the corresponding status data structure. For the register model, the summary message is true when there is an event set to permit the occurrence of more than one true event; while for the queue model, it is true if the queue is not empty.

As shown below, the MT8801C does not use bits 0, 1 and 7. As it uses bits 2 and 3 as the summary bit of the status register, it has 3 register model types (where 2 types are extended) and one queue model type (with no extension).

Service Request generated -----

5.2.3 Reading and clearing the STB register

Serial poll or the *STB? common query are used to read the contents of the STB register. STB messages conforming to IEEE488.1 can be read by either method, but the value sent to bit 6 (position) is different for each message. The STB register can be cleared by using the *CLS command.

(1) Reading by serial poll (only when using the GPIB interface)

When using serial poll conforming to IEEE488.1, the device must return a 7-bit status byte and an RQS message bit which conforms to IEEE488.1.According to IEEE488.1, the RQS message indicates whether the device sent SRQ as true or not. The value of the status byte is not changed by serial poll. The device must set the RQS message to false immediately after being polled. As a result, if the device is again polled before there is a new cause for a service request, the RQS message is false.

(2) Reading by the *STB common query

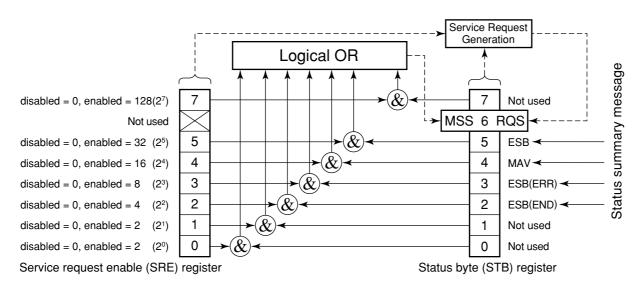
The *STB? common query requires the device to send the contents of the STB register and an integer format response message from the MSS (Master Summary Status) summary message. The response represents the total binary weighted value of the STB register and the MSS summary message. STB register bits 0 to 5 and 7 are weighted to 1, 2, 4, 8, 16, 32, and 128; and the MSS to 64, respectively. Thus, excepting the fact that bit 6 represents the MSS summary message instead of the RQS message, the response to *STB? is identical to that for serial poll.

(3) Definition of MSS (Master Summary Status)

MSS indicates that there is at least one cause for a service request. The MSS message is represented by bit 6 in a device response to the *STB? query, but it is not generated response to serial poll. In addition, it is not part of the status byte specified by IEEE488.1.MSS is generated by the logical OR operation of the STB register with SRQ enable (SRE) register. In concrete terms, MSS is defined as follows:

(STB Register bit0 AND SRE Register bit0) OR (STB Register bit1 AND SRE Register bit1) OR : (STB Register bit5 AND SRE Register bit5) OR (STB Register bit7 AND SRE Register bit7)

Since bit-6 status of the STB and SR enable registers is ignored in the definition of MSS, it can be considered that bit-6 status is always being 0 when calculating the value of MSS.


(4) Clearing the STB register by the *CLS common command

With the exception of the output queue and its MAV summary message, the *CLS common command clears all status data structures (status event registers and queues) as well as the corresponding summary messages. The *CLS command does not affect settings in the enable registers.

5.3 Enabling the Service Request (SRQ)

All types of summary messages in the STB register can be enabled or disabled for service requests (SRE) by using the program-controlling service request (SRQ) enable operation. The service request enable (SRE) register controls the generation of SRQ in bits 0 to 7 as shown in the diagram below.

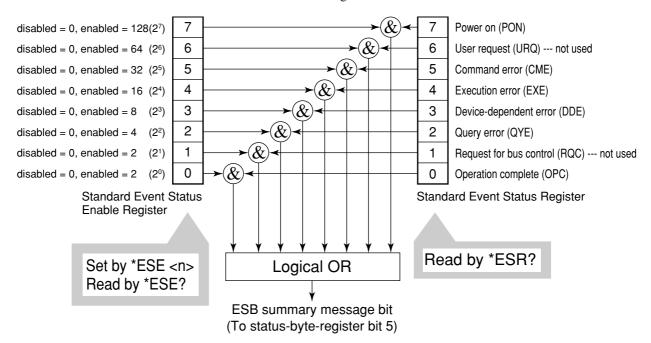
Bits in the service request enable register correspond to bits in the status byte register. If a bit in the status byte corresponding to an enabled bit in the service request enable register is set to 1, the device makes a service request to the controller with the RQS bit set to 1.For example, if bit 4 in the service request enable register is enabled, the device makes a request for service to the controller each time the MAV bit is set to 1 when there is data in the output queue.

(1) Reading the SRE register

The contents of the SRE register are read using the *SRE? common query. The response message to this query is an integer from 0 to 255, which is the sum of the bit digit weighted values in the SRE register. SRE register bits 0 to 5 and 7 are respectively weighted to 1, 2, 4, 8, 16, 32, and 128. The unused bit 6 must always be set to 0.

(2) Updating the SRE register

The *SRE common instruction is used to write data to the SRE register. An integer from 0 to 255 is added after the *SRE . fm3common instruction.


This integer indicates the total number of bits in the SRE register (weighted values:1, 2, 4, 8, 16, 32, and 128), and sets the corresponding SRE register bit to 0 or 1.

A bit value of 1 indicates an enabled state; 0 indicates a disabled state. Always ignore the value of bit 6.

5.4 Standard Event Status Register

5.4.1 Bit definition of standard event status register

The standard event status register must be available on all devices conforming to the IEEE488.2 standard. The diagram below shows the operation of the standard event status register model. Because the operation of the model is the same as that for the other models already described, the following only explains the meaning of each bit in the standard event status register as defined in the IEEE488.2 standard.

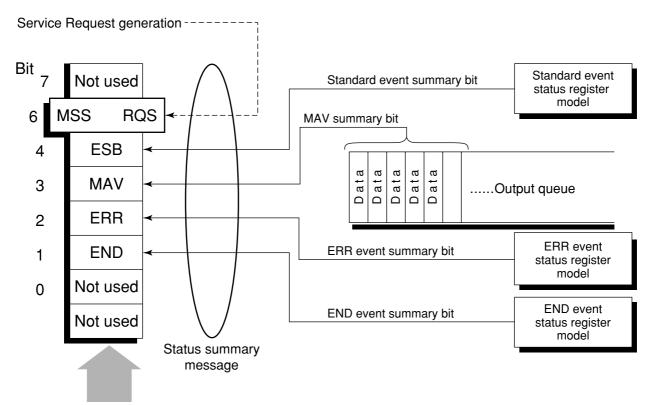
Standard event status enable (ESE) register selects whether the register makes the summary message true when the corresponding bit of the event status register is set.

Bit	Event name	Description
7	Power on (PON)	The power is turned on.
6	User Request (URQ)	Request for local control (rtl). This bit is produced regardless of whether a device is in remote or local mode. It is not used for the MT8801C so, it is always set to 0.
5	Command Error (CME)	An illegal program message, a misspelt command or a GET command within a program is received.
4	Execution error (EXE)	A legal program message, which cannot be executed, is received.
3	Device-dependent Error (DDE)	An error caused by other than CME, EXE or QYE (e.g., parameter error) occurred.
2	Query Error (QYE)	An attempt is made to read data in the output queue though there is none there, or data is lost from the output queue due to some reason (e.g., overflow).
1	Request Control (RQC)	A device is requesting an active controller. This bit is not used for the MT8801C so, it is always set to 0.
0	Operation Complete (OPC)	A device has completed specified operations and is ready to receive new commands. This bit is only set in response to the *OPC command.

5.4.2 Query error details

No.	ltem	Description	
1	Incomplete program message	If a device receives an MTA from the controller before it receives the terminator of the program message it is receiving, it aborts the incomplete program message and waits for the next one. To abort the incomplete message, the device clears its input-output buffer, reports a query error to the status report section and sets bit 2 in the standard status register to indicate the query error.	
2Interruption of response message outputof the response message it is sending, it automatically interrupts in output and waits for the next program. To interrupt the response the device clears its output buffer, reports a query error to the state		If a device receives an MLA from the controller before it has sent the terminator of the response message it is sending, it automatically interrupts response message output and waits for the next program. To interrupt the response message output, the device clears its output buffer, reports a query error to the status report section, and sets bit 2 in the standard status register to indicate the query error.	
 program message without reading has sent another program message imm message, the device aborts the response 		When a device becomes unable to send a response message because the controller has sent another program message immediately following a program or query message, the device aborts the response message and waits for the next program message. It then reports a query error to the status report section as in No.2 above.	
4	Output queue overflow	When several program and query messages are executed in succession, too many response messages for the output queue (256 bytes) may be generated. If further query messages are received when the output queue is full, the output queue cannot send corresponding responses due to the overflow situation. If there is overflow in the output queue, the device clears it and resets the section where response messages are created. Then it sets bit 2 in the standard event status register to indicate a query error.	

5.4.3 Reading, writing to and clearing the standard event status register

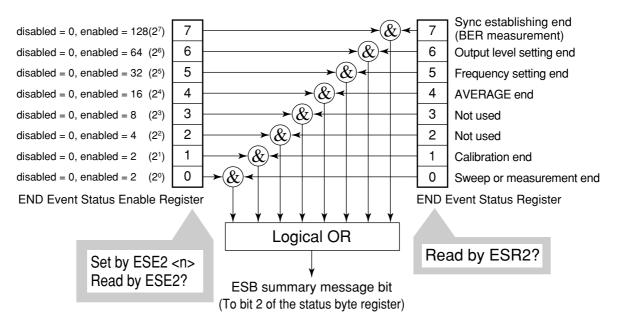

Reading	The register is read by the *ESR? common query. The register is cleared after being read. The response message is an integer format data value obtained by binary weighting the event bit and converting it to a decimal number.		
Writing	With the exception of clearing, writing operations cannot be performed externally.		
Clearing	 The register is only cleared in the following cases: [1] A *CLS command received. [2] The power is turned on. Devices first clear their standard event status registers but later record events that occurred during the sequence in the registers (e.g., setting of the PON event bit). [3] An event is read for the *ESR? command. 		

5.4.4 Reading, writing to and clearing the standard event status enable register

Reading	The register is read by the *ESE? common query. The response message is an integer format data value obtained by binary weighting the event bit and converting to a decimal number.		
Writing	The register is written to by the *ESE common command. As bits 0 to 7 of the register are respectively weighted to 1, 2, 4, 8, 16, 32, 64, and 128, data to be written is sent by <decimal data="" numeric="" program=""></decimal> which is the digit total of the bits selected from these bits.		
Clearing	 The register is cleared in the following cases: [1] An *ESE command with a data value of 0 is received. [2] The power is turned on. The standard event status enable register is not affected by the following: [1] Changes of the status of the IEEE488.1 device clear function [2] An *RST common command is received. [3] A *CLS common command is received. 		

5.5 Extended Event Status Register

The register models of the status byte register, standard event status register and enable registers are mandatory for equipment conforming to the IEEE488.2 standard. In IEEE488.2, status-byte-register bits 7 (DIO8), 3 (DIO4) to 0 (DIO1) are assigned to status summary bits supplied by the extended-register and extended-queue models. For the MT8801C, as shown in the diagram below, bits 7, 1 and 0 are unused; bits 2 and 3 are assigned to the END and ERR summary bits as the status-summary bits supplied by the extended-register model. As the queue model is not extended, there is only one type of queue: the output queue.

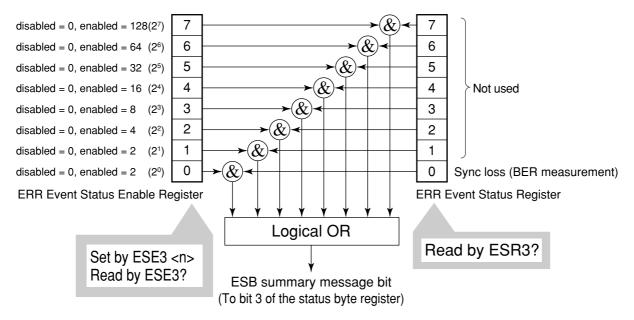


Status byte register

The following pages describe bit definition, the reading, writing to and clearing of bits for the END extended event register model.

5.5.1 Bit definition of END event status register

The following describes the operation of the END event status register model, the naming of its event bits, and what they mean.



The END event status register selects whether the register makes the summary message true when the corresponding bit of the status register is set.

Bit	Event name	Description	
7	Sync establishing end	This bit is set to 1 when synchronization is established after BER measurement starts.	
6	Output level setting end	This bit is set to 1 when output level setting ends.	
5	Frequency setting end	This bit is set to 1 when frequency setting ends.	
4	AVERAGE end	This bit is set to 1 when averaging ends.	
3	(Not used)	(Not used)	
2	(Not used)	(Not used)	
1	CAL end	This bit is set to 1 when calibration ends.	
0	Sweep or measurement end	This bit is set to 1 when sweep or measurement ends.	

5.5.2 Bit definition of ERR event status register

The following describes the operation of the ERR event status register model, the naming of its event bits, and what they mean.

The ERR event status register selects whether the register makes the summary message true when the corresponding bit of the status register is set.

Bit	Event name	Description
7	(Not used)	(Not used)
6	(Not used)	(Not used)
5	(Not used)	(Not used)
4	(Not used)	(Not used)
3	(Not used)	(Not used)
2	(Not used)	(Not used)
1	(Not used)	(Not used)
0	Sync loss	This bit is set to 1 when synchronization loss is occurred.

5.5.3 Reading, writing to and clearing the extended event status register

Reading	The register is destructively read by a query (e.g., it cleared after being read). The END/ERR event status register is read by ESR2?/ESR3? query. The read value, an integer format data (NR1), is obtained by binary weighting the event bit and converting it to decimal.	
Writing	With the exception of clearing, writing operations cannot be performed externally.	
	The register is cleared in the following cases:	
Clearing	[1] A *CLS command is received.	
Cleaning	[2] The power is turned on.	
	[3] An event is read by the ESR2?/ESR3? query command.	

5.3.4 Reading, writing to and clearing the extended event status enable register

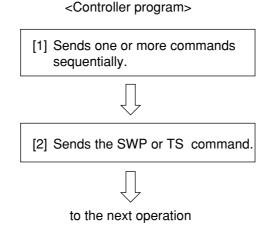
Reading	The register is non-destructively read by a query (i.e., not cleared after being read). The END/ERR event status register is read by the ESE2?/ESE3? query. The read value, an integer format data (NR2), is obtained by binary total weighting the event bit and converting it to decimal.
Writing	The END/ERR event status register is written to by the ESE2/ESE3 program command. As bits 0 to 7 of the registers are respectively binary weighted to 1, 2, 4, 8, 16, 32, 64, and 128, write data is sent as the integer format data obtained by total weighting the digit value of bits selected from among them.
Clearing	 The register is cleared in the following cases: [1] The ESE2/ESE3 program command with a data value of 0 is received for the END/ERR event status register. [2] The power is turned on the power-on-status-clear flag is true. The extended event status enable register is not affected by the following: [3] Changes of the status of the IEEE488.1 device clear function [4] An *RST common command is received. [5] A *CLS common command is received.

5.6 Techniques for Synchronizing the MT8801C with a Controller

The MT8801C usually treats program messages as sequential commands that do not execute the processing of newly received commands until the previous command has been processed. Thus, special consideration need not be taken for pair-synchronization between the MT8801C and the controller.

If the controller controls one or more devices and synchronizes with them, after all the commands specified for the MT8801C have been processed, the next commands must be sent to other devices.

There are five ways of synchronizing the MT8801C with the controller:

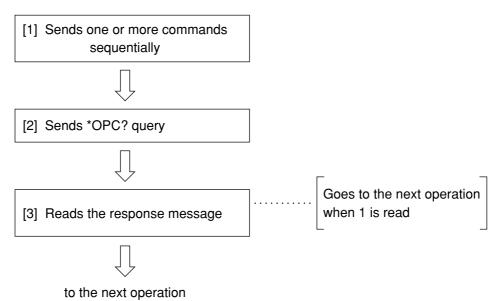

- [1] Wait for SWP or TS command termination.
- [2] Wait for a response after the *OPC? query is sent.
- [3] Wait for SRQ after *OPC is sent.
- [4] Wait for status generation of the status register.
- [5] Wait for SRQ by the status register.

5.6.1 Wait for SWP or TS command termination

When the MT8801C starts measurement using the SWP or TS command, it stops accepting the next measurement command until it terminates the measurement. Use this feature to set a synchronization.

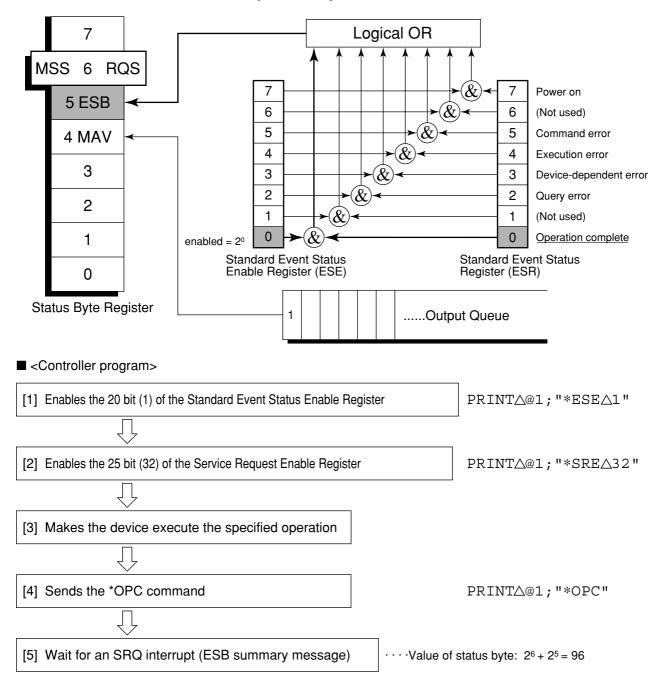
Note:

A response may not be returned if there is no measurement termination condition (permanent measurement of BER, etc.). In Average measurement mode, a response may be returned before averaging.


5.6.2 Wait for response after *OPC? query is sent

When executing the *OPC? query command, the MT8801C outputs "1" as the response message at the end of the previous command. The controller is synchronized with the MT8801C by waiting for the request message to be entered.

Note:


When the read response message is "Q" (command is being executed), wait for about 50 ms until the controller moves to the next operation.

<Controller program>

5.6.3 Wait for service request after *OPC is sent

The MT8801C sets the operation-complete bit (bit 0) to 1 when executing the *OPC command. The controller is synchronized with the MT8801C by waiting for SRQ when the operation-complete bit is set for SRQ.

5.6.4 Wait for status generation of the status register

An event status register bit of the MT8801C is set to 1 when the corresponding event occurs. When the *ESR?, ESR2?, or ESR3? query is executed, the MT8801C outputs the value of the corresponding status register as a response message. The controller reads this response message and waits until the response becomes the specified value for synchronization. Reset the event status register immediately before making a desired event occur.

Note:

Wait for 50 ms for the controller to go to the next operation after reading a response message.

• <Controller program : Synchronization by operation termination bit>

1. Clear the status register.	PRINT @1:"*CLS"
\Box	
2. Sends one or more commands sequentially.	
$\overline{\Box}$	
3. *ESR? query	PRINT @1:"*ESR?"
Ţ	1
4. Reads the response message.	Goes to the next operation when the read value becomes the desired
$\overline{\mathbf{Q}}$	value (bit 2º to "1").

to the next operation

5.6.5 Wait for service request issuance from the status register

An event status register bit of the MT8801C is set to 1 when the corresponding event occurs. After setting these bits to set the RQS, the controller waits the SRQ for synchronization. Reset the event status register immediately before making a desired event occur.

• <Controller program 1: Synchronization by operation termination bit>

1. Clears the status register.	PRINT	@1:"*CLS"
$\overline{\Box}$		
2. Sets bit 2° of the standard event status enable register to 1.	PRINT	@1:"*ESE 1"
$\overline{\Box}$		
3. Sets bit 2 ⁵ (32) of the service request enable register to 1.	PRINT	@1:"*SRE 32"
$\overline{\Box}$		
4. Makes the device execute the specified operation.		
$\overline{\Box}$		
5. Waits for SRQ interrupt (ESB summary message).	Status	byte value: 2 ⁶ + 2 ⁵ = 96
$\overline{\Box}$	-	
to the next operation		

5.6 Techniques for Synchronizing the MT8801C with a Controller

- PRINT @1:"*CLS" 1. Clears the status register Ú 2. Sets bit 2º (1) of the extended END event status enable PRINT @1:"ESE2 1" register to 1 Ĺ 3. Sets bit 2² (4) of the service request enable register to 1 PRINT @1:"*SRE 4" Û 4. Make the device execute the specified operation (measurement) \hat{U} Status byte value: 2⁶ + 2²= 68 5. Waits for SRQ interrupt (ESB summary message) Ţ to the next operation
- <Controller program 2: Synchronization by the sweep/measurement termination bit>

Section 6 Initial Settings

This section outlines initialization for the system and describes how to initialize the system.

An example of initial settings are written for IBM-PC commands.

6.1	General Description	6-2
6.2	Bus Initialization by the IFC Statement	6-3
6.3	Initialization for Message Exchange by DCL and	
	SDC Bus Commands	6-4
6.4	Device Initialization by the *RST Command	6-5
6.5	Device Initialization by the PRE/INI/IP Command	6-6
6.6	Device Status at Power-on	6-7

6.1 General Description

There are three levels of initialization for the GPIB system.

The first level is bus initialization using the IFC statement with the system bus in the idle state.

The second level is initialization for message exchange using the DCL command to enable devices to receive program messages.

The third level is device initialization using the PRE or *RST command to initialize device functions. These levels of initialization prepare a device for operation.

A device must be set to a known state when the power is switched on.

Level	Initialization type	Description	Level combination and sequence
1	Bus initialization	The IFC message from the controller initializes all interface functions connected to the bus.	Can be combined with other levels, level 1 must be executed before level 2.
2	Initialization for message exchange	The message exchanges of all devices and specified devices on the GPIB are initialized respectively by the DCL (Device Clear) and SDC (Select Device Clear) GPIB bus commands, which also nullify the function that reports to the controller that operation has completed.	Can be combined with other levels, level 2 must be executed before level 3.
3	Device initialization	The *RST or PRE/INI/IP command returns the specified device to the device-dependent known state, regardless of the conditions of previous device use.	Can be combined with other levels; level 3 must be executed after levels 1 and 2.

The following paragraph describes the commands for executing levels 1, 2, and 3, and the items initialized by execution. It also describes the known state which is set when the power is switched on.

When controlling with an external controller through the GPIB interface bus, all the initialization functions of the first/second/third levels can be used.

When controlling with an external controller through the RS-232C interface port, the initialization function of the third level (device initialization) can be used. The initialization functions of the first/second levels cannot be used.

6.2 Bus Initialization by the IFC Statement

■ Example

Call ibsic(ud%)

Explanation

IThe IFC statement initializes the interface functions of all devices connected to the GPIB bus line.

The initialization of interface functions involves erasing the settings (e.g. talker, listener) made by the controller and resetting to the initial states. In the table below, \bigcirc indicates the initialized functions; \triangle indicates partially initialized functions.

No	Function	Symbol	Initialization by IFC
1	Source handshake	SH	
2	Acceptor handshake	AH	0
3	Talker or extended talker	T or TE	0
4	Listener or extended listener	L or LT	0
5	Service request	SR	Δ
6	Remote/local	RL	
7	Parallel poll	РР	
8	Device clear	DC	
9	Device trigger	DT	
10	Controller	С	

Bus initialization by the IFC statement does not affect the device-operating state (e.g. frequency settings, lamp on/off).

6.3 Initialization for Message Exchange by DCL and SDC Bus Commands

Example

Call ibclr(ud%)

Initializes only the device which is specified by ud% for message exchange (sending SDC)

Explanation

This statement executes initialization for message exchange by all devices or only the specified device on the GPIB of the specified select code.

Items to be initialized for message exchange

The MT8801C by which the DCL or SDC bus command is accepted executes the following:

- [1] Input buffer and Output Queue: Cleared; the MAV bit is also cleared at the same time.
- [2] Parser, Execution Controller, and Response Formatter: Reset
- [3] Device commands including *RST: Clears all commands that prevent these commands from executing.
- [4] Processing the *OPC command: Puts a device in OCIS (Operation Complete Command Idle State). As a result, the operation complete bit cannot be set in the Standard Event Status Register.
- [5] Processing the *OPC query: Puts a device in OQIS (Operation Complete Query Idle State). As a result, the operation complete bit 1 cannot be set in the Output Queue.
- [6] Device function: Puts sections relating to message exchange in an idle state. The device keeps waiting for a message from a controller.

Note:

The items listed below are not affected even if DCL and SDC bus command processing is executed:

- [1] The current data set or stored in the device
- [2] Front panel settings
- [3] Other status byte state except MAV bit
- [4] Device operation in progress

6.4 Device Initialization by the *RST Command

Syntax	
	*RST
■ Example	
•	<pre>PCall ibwrt(ud%,"*RST"):</pre>
	Initializes the device (MT8801C) whose address is 1 with level 3.
Explanation	
-	The *RST(Reset) command is an IEEE488.2 common command which resets a de-
	vice with level 3.
	The *RST(Reset) command is used to reset a device (MT8801C) to a specific initial
	state. Refer to the separate Operation Manual Appendix B for details of initialization
	items and initial values.
	Note:
	The *RST command does not affect the items listed below.
	[1] IEEE488.1 interface state
	[2] Device address
	[3] Output Queue
	[4] Service Request Enable register
	[5] Standard Event Status Enable register
	[6] Power-on-status-clear flag setting
	[7] Calibration data affecting device specifications
	[8] Parameters preset for controlling external devices, etc.

6.5 Device Initialization by the PRE/INI/IP Command

Syntax

PRE INI IP

Example (program message)

Call ibwrt(ud%, "PRE"): Initializes the device (MT8801C) whose address is 1 with level 3.

Explanation

The PRE, INI and IP commands are MT8801C device-dependent messages which initialize a device with level 3.

Refer to the separate Operation Manual Appendix B for details of items initialized by the PRE, INI, and IP commands and initial values.

6.6 Device Status at Power-on

When the power is switched on:

- [1] Preset value: When a power-off time (POWERON LAST) is selected, the device is set to the status before the last power off.Preset value: When Recall memory No. (POWERON n) is selected, the device is set to file (number [n]) status.
- [2] The Input Buffer and Output Queue are cleared.
- [3] The Parser, Execution Controller, and Response Formatter are initialized.
- [4] The device is put into OCIS (Operation Complete Command Idle State).
- [5] The device is put into OQIS (Operation Complete Query Idle State).
- [6] The Standard Event Status and Standard Event Status Enable Registers are cleared. Events can be recorded after the registers have been cleared.

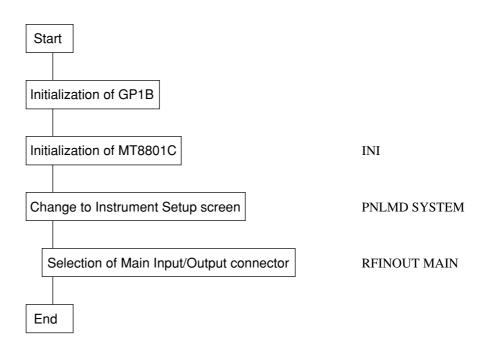
For the special case of [1], when the power supply is first turned on after the device is shipped, the initial values are set to those in the initial setting table (refer to separate Operation Manual Appendix B).

Section 7 Sample Protram

In this section, the program flow is explained for controlling MT8801C (Analog measurement) and for conducting automatic measurement by using the controller.

7.1	Notes of	on creating the Program	7-2
7.2	Sample	e Program	7-3
	7.2.1	Analog measurement common settings	7-3
	7.2.2	Transmitter frequency and power	
		measurement	7-4
	7.2.3	Transmitter microphone input sensitivity	
		measurement	7-5
	7.2.4	Transmitter maximum frequency deviation	
		measurement	7-6
	7.2.5	Transmitter modulation S/N measurement	7-7
	7.2.6	Transmitter modulation distortion	
		measurement	7-7
	7.2.7	Transmitter modulation frequency-characterist	tic
		measurement	7-8
	7.2.8	Receiver AF output level measurement	7-9
	7.2.9	Receiver AF output level frequency-characteristic	
		measurement	7-10
	7.2.10	Receiver 12dB SINAD sensitivity	
		measurement	7-12
	7.2.11	Receiver 20dB NQ sensitivity	
		measurement	7-13
	7.2.12	Receiver band width measurement	7-14
	7.2.13	Receiver demodulation S/N measurement	7-15
	7.2.14	Receiver demodulation distortion	
		measurement	7-16

7.1 Notes on creating the Program

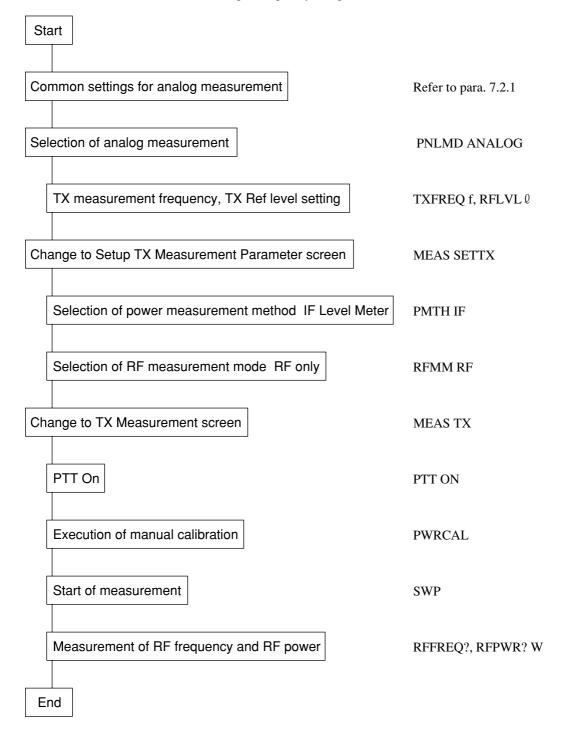

When a remote control program is creating, carefully note the following points.

No.	Key points	Explanation
1	Each device must be initialized.	 Each device is not always in the appropriate condition during actual usage due to operation of the device itself on the panel or the execution of other programs. Therefore, each device must be initialized to make the conditions at the start of usage constant. Do the following: [1] Initialize the interface function [2] Initialize the message exchange function of the device [3] Initialize the specific function of the device
2	The remote condition of the device must be RWLS (Remote With Lock- out State).	Device is set to local lockout to prevent the device returning to local. In the simple remote condition, when the [local] key is pressed, the device will enter the local condition. In this situation, if a panel key is pressed, auto-measurement will not function normally and measurement data may become unreliable.
3	If an inquiry is sent, commands which are related to the device must not be sent immediately, except after the reading of result.	Immediately after the inquiry command, the result of reading must be described in succession. If commands other than result reading are sent to the controller before the result of inquiry is read, and MLA is received, the output buffer will be cleared and the response message will be deleted.
4	Program avoiding exceptional protocol operation	No.3 above is one of the exceptional protocol operation, but try to avoid exceptional operation unless necessary. As for expected exceptions, set exception treatment parts in the program to avoid errors of stopping execution of the program.
5	Confirmation of interface function (subset) of each device	Confirm the subset of each device. When a program is executed for a device without the necessary subset, processing will not continue. Also check that the machine type conforms to IEEE488.2.

7.2 Sample Program

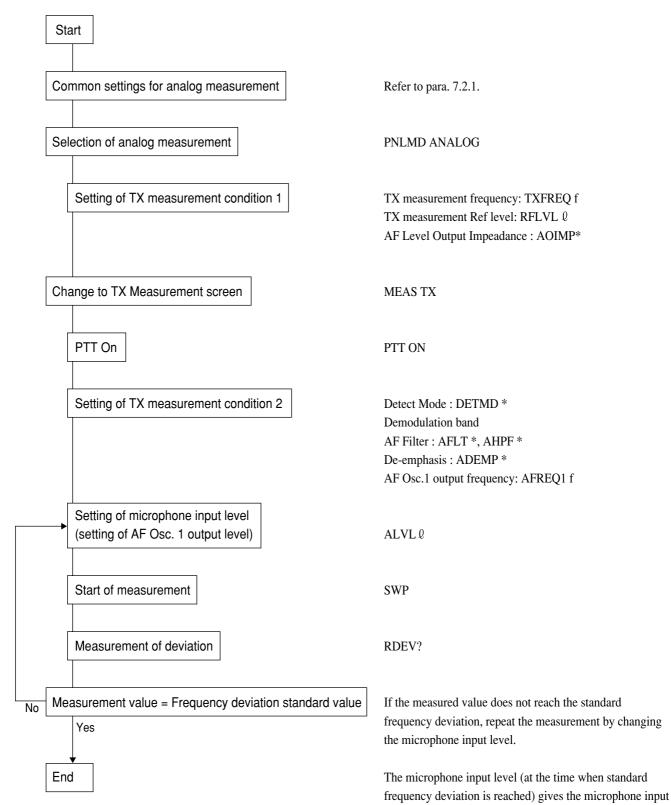
7.2.1 Analog measurement common settings

Use the common settings for analog measurement.



Refer to Section 6 concerning the initialization of GP1B.

There are four commands, namely IP, PRE, INI, *RST, for initializing the MT8801C. IP, PRE and INI can be used as the same function. *RST is for initializing a wider range than the other initialization commands. The parameters initialized by these commands are shown in the list of initial values in Appendix B, Panel Operation.

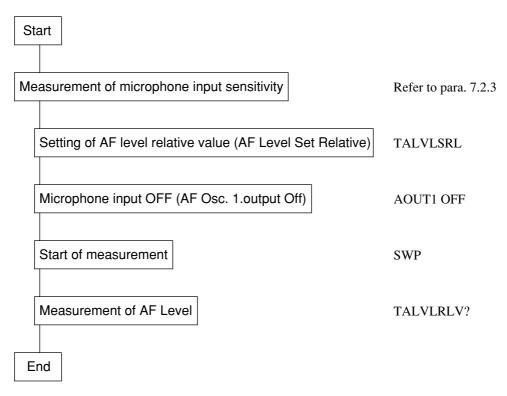

7.2.2 Transmitter frequency and power measurement

Measure the output frequency and power of the transmitter.

7.2.3 Transmitter microphone input sensitivity measurement

Measure the microphone input level of AF signal necessary for obtaining the standard frequency change (for example 3.5 kHz) for the transmitter.

sensitivity.

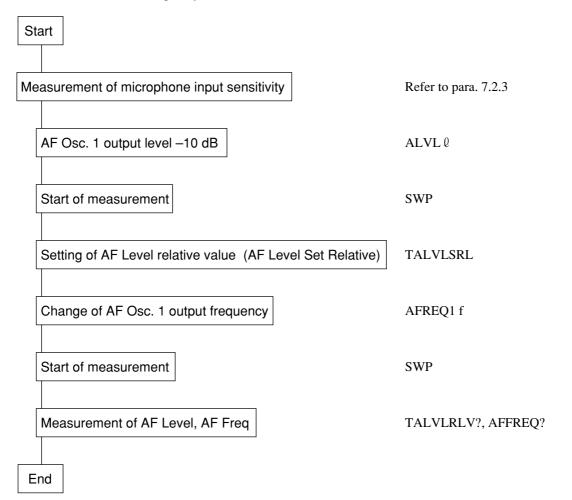

7.2.4 Transmitter maximum frequency deviation measurement

Increase the microphone input level from the microphone input level (at which the standard frequency deviation is obtained) to +20 dB, then measure the maximum value of the frequency deviation thus obtained.

St	art	
Me	easurement of microphone input sensitivity	Refer to para. 7.2.3.
	Increase of microphone input level (AF Osc. 1 output level)	ALVL Q
	Start of measurement	SWP
	Measurement of deviation	RDEV?
	Compare with previous measurement value and record the larger value.	
No	AF Osc. 1 output level = Microphone input sensitivity +20 dB Yes	Increase AF Osc. 1 output level till the microphone input sensitivity (reached at the time of obtaining standard frequency deviation) +20 dB, then repeat the measurement.
E	nd	The maximum value of frequency deviation obtained when increasing AF Osc. 1 output level to +20 dB will be the maximum frequency deviation.

7.2.5 Transmitter modulation S/N measurement

Measure the ratio of modulation signal level (S) (at the time of modulation by the standard frequency deviation) against the residual modulation noise (N) (at the time of non-modulation).

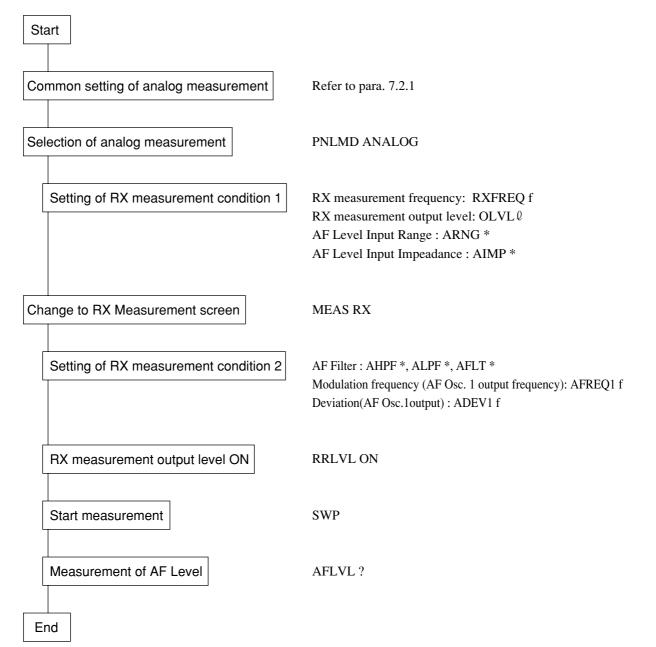

7.2.6 Transmitter modulation distortion measurement

Measure the distortion of the modulation signal at the time of modulation by the standard frequency deviation.

Start	
Measurement of microphone input sensitivity	Refer to para. 7.2.3
Measurement of distortion	DSTN?
End	

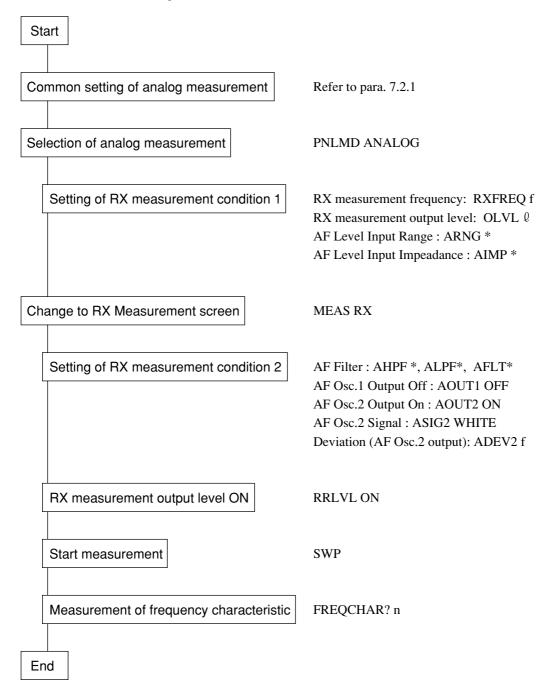
7.2.7 Transmitter modulation frequency-characteristic measurement

Change the modulation frequency and measure the change of demodulation level. The measured value is expressed as the deviation compared to the level at modulation frequency of 1 kHz.



7.2.8 Receiver AF output level measurement

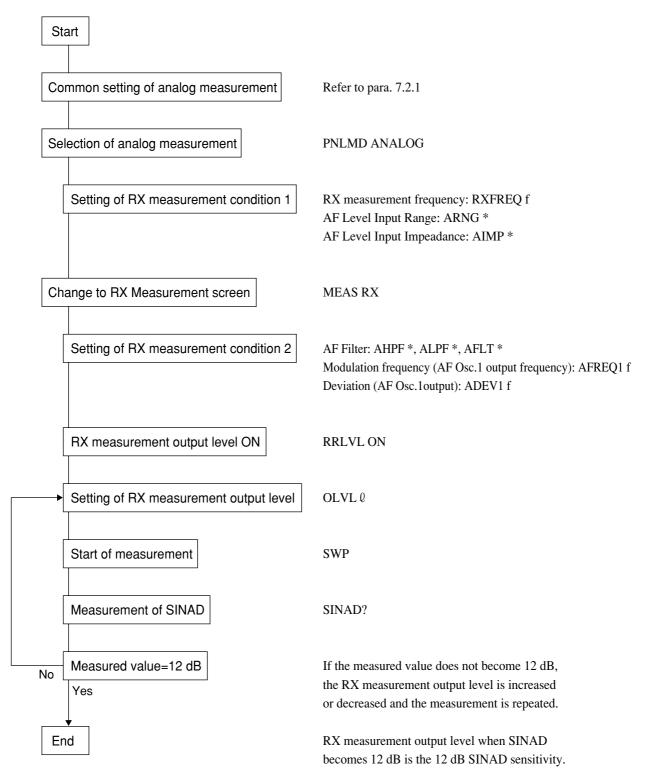
Add the standard modulated (modulation of standard frequency deviation by 1 kHz signal) RF signal to a receiver and measure the demodulated output level from such as outside speaker terminal.


This demodulation output level is usually different for different setting positions of the sound volume of the receiver, so during automatic measurement, adjust the volume to an appropriate position manually by measuring the AF output level before automatic measurement.

Measurement of the AF output level of the receiver of automatic measurement reconfirms the AF output level and shows the standard level of measurements of distortion and S/N as described below.

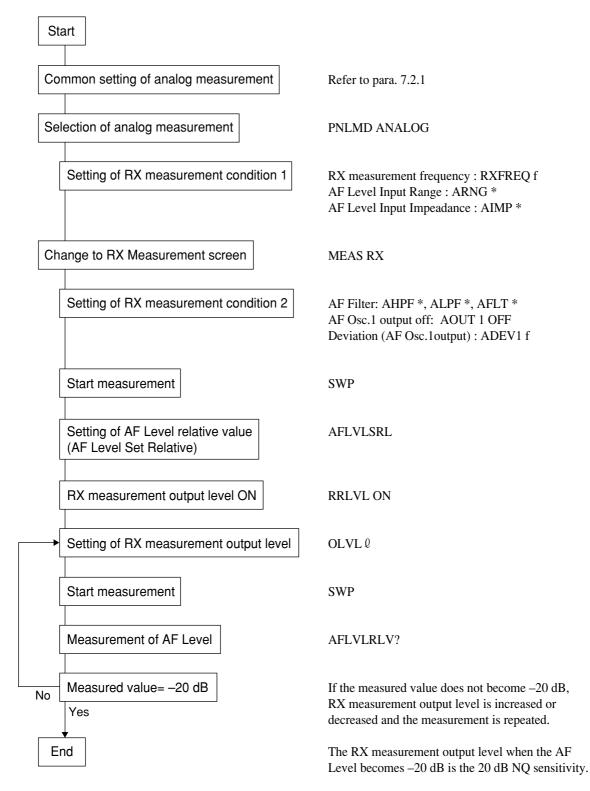
7.2.9 Receiver AF output level frequency-characteristic measurement

Add the RF signal modulated (equally modulated by modulation signal of 50 Hz to 10 kHz) by noise to a receiver and measure the frequency characteristic from the demodulated signal. This machine has frequency characteristics of 50 Hz to 10 kHz/ 50 Hz step, which are FFT-ed with the demodulated signal and standardized by the level at 1 kHz. Therefore, when the measured value is read out, the frequency must be designated.

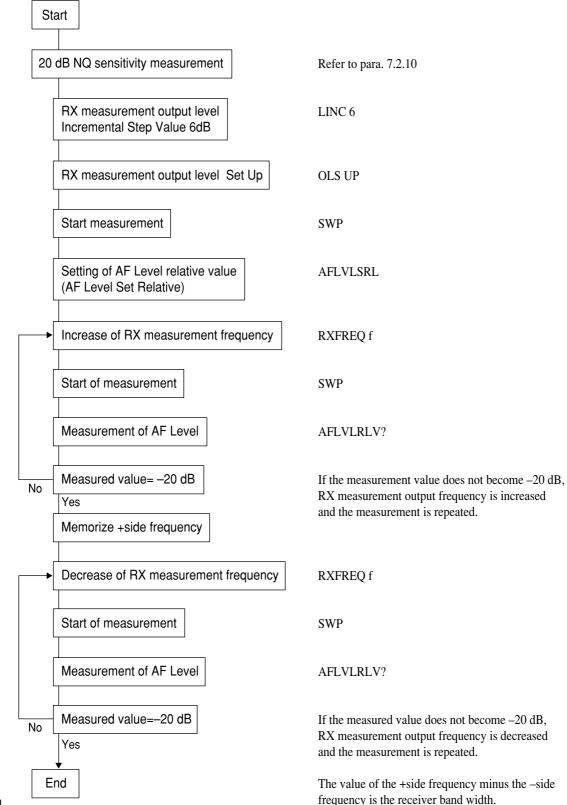

The executed value (rms) of Deviation when selecting Noise for AF Osc.2 Signal will be 1/ square root 2 of the set value. Also, Peak Deviation will be approximately twice this set value.

When a FREQCHAR? command is entered, an integer number n of 1 to 200 must be designated. This n is an integer number parameter used to designate arbitrary frequency f between 50 Hz and 10 kHz, and it has the following relation with frequency: f=50 n (n=1 to 200) (Hz)

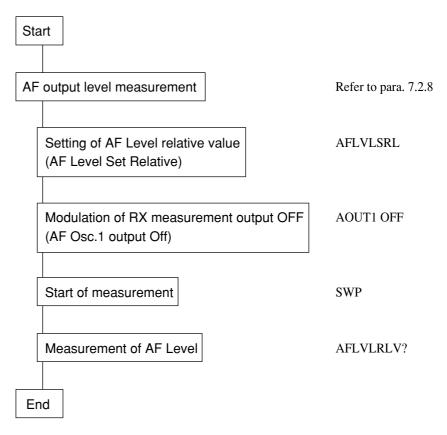
Consequently, for reading out multiple data, change the n value (frequency) and read out necessary data .


7.2.10 Receiver 12dB SINAD sensitivity measurement

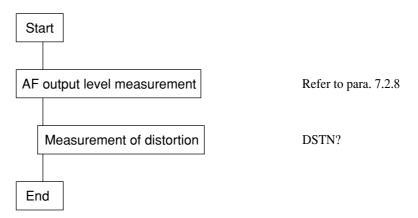
Add the standard modulated RF signal to a receiver and measure the RF signal level where the ratio (signal+noise+distortion) / (noise+distortion) of the demodulated signal become 12 dB.


7.2.11 Receiver 20dB NQ sensitivity measurement

The noise level (that appear in the receiver demodulation output when without a signal) is used as the standard, and by gradually increasing the RF signal level from the signal generator, measure the RF signal level at which the noise level becomes 20 dB below the standard.


7.2.12 Receiver band width measurement

After increasing the signal generator level by +6 dB from the 20 dB NQ sensitive value, change the frequency of the signal generator to the +side and –side from the center, and measure the frequency where the noise level falls again by 20 dB.


7.2.13 Receiver demodulation S/N measurement

Add the output of the signal generator (modulated by the standard frequency deviation) to a receiver, make the demodulated output at that time as the standard, and measure the ratio with the noise level appearing in the demodulated output when the modulation is off.

7.2.14 Receiver demodulation distortion measurement

Add the signal generator output (modulated by the standard frequency deviation) to a receiver, and measure the distortion of the demodulation output.

Appendixes

Appendix A	ASCII Code Table	A-1
Appendix B	Comparsion Table of Controllers' GPIB	
	Instructions	B-1
Appendix C	Index	C-1

Appendixes

Appendix A ASCII Code Table

	B	7 B6	B5	0	0	0	0	0 1	0	1	0	0	1	1	1	0	0	1	0	1	1	1	0		1	1
	Bľ	тs	53	CONTROL								BER		1	UPPER CASE											
B4	B3		B1							S	YM		S			UFI			SL.			LUN	VLF			
0	0	0	0	0	NUL			DLE	40	SP		60	0		100	@		120	Р		140	•		160	р	
				0			10	16 LLO			32	30 61		48	40 101		64	50 121		80	60 141		96	70 161		112
0	0	0	1	1	SOH			DC1		!			1			А			Q			а			q	
				1 2			11 22	17	21 42		33	31 62		49	41 102		65	51 122		81	61 142		97	71 162		113
0	0	1	0	2	NUL			DC2 18	22	"	34	32	2	50	42	В	66	52	R		62	b	98	72	r	114
				3			23		43			63		50	103	_	00	123		02	143		90	163		- 114
0	0	1	1	3	ETX		13	DC3 19	23	#	35	33	3	51	43	С	67	53	S	83	63	С	99	73	S	115
0	1	0	0	4				DCL	44	S		64	4		104	D		124	т		144	4		164		
0	I	0	0	4				DC4 20	24	3	36	34	4	52	44	D	68	54	I	84	64	d	100	74	t	116
0	1	0	1	5	I ENO		25	PPU NAK	45	%		65	5		105	Е		125	U		145	е		165	u	
		0		5		5		21		/0	37	35	•	53	45	-	69			85	65		101		-	117
0	1	1	0	6	ACK			SYN	46	&		66	6		106	F		126	V		146	f		166	v	
				6 7		6	16 27	22	26 47		38	36 67		54	46 107		70	56 127		86	66 147		102	76 167		118
0	1	1	1	,	BEL			ETB		'	20		7			G			W			g	102		w	
				7 10		7 GET		23 SPE			39	37 70		55	47 110		71	57 130		87	67 150		103	170		119
1	0	0	0	8	BS		18	CAN 24	28	(40	38	8	56	48	Н	72	58	Х		68	h	104	78	х	
				11	1	ГСТ		SPD			10	71		50	111		72	131		00	151		101	171		120
1	0	0	1	9	ΗT		19	EM 25	29)	41	39	9	57	49	I	73	59	Y	89	69	i	105	79	у	121
1	0	1	0	12	LF		32	SUB	52	*		72			112	J		132	Z		152	i		172	z	
	0	1	0	A		10	1A	26	2A		42	3A	•	58	4A	0	74	5A	2	90	6A	J	106	7A		122
1	0	1	1	13	VT		33	ESC	53	÷		73	;		113	к		133	1		153	k		173	{	
				В 14		11	1B 34	27	2B 54		43	3B 74		59	4B		75	5B	-	91	6B		107	7B 174		123
1	1	0	0		FF			FS		,			<		114	L		134	Ν		154	Ι			5	
				C 15			1C 35	28	2C 55		44	3C 75		60	4C 115		76	5C 135		92	6C 155		108	7C 175		124
1	1	0	1		CR		1D	GS 20	2D	—	45	3D	=	61		М]	02	6D	m			}	125
				D 16		15	36		2D 56		43	3D 76		01	4D 116		//	5D 136		95	156		109	176		125
1	1	1	0	E	SO	14	1E	RS 30	2E	•	46	3E	>	62	4E	Ν	78	5E	\wedge	94	6E	n	110	7E	~	126
	1	1	1	17			37		57	,		77	?		117	~		137	1		157					
1	1	1	1	F	SI	15	1F	US 31	2F	/	47	3F	?	63	4F	0	79	5F	_	95	6F	0	111	7F	(DEL)	127
					dress			iversal			ten					Т	alk a	ddre	ss			onda	-	ddres	s or	
				cor	nmand	1	con	nmand		ado	lres	8									com	nman	d			

KEY octal 25 hex 15

PPU GPIB code NAK ASCII chara

21

ASCII character decimal

*American Standard Code for Information Interchange

Table A-1 GPIB Interface Messages (Extended)

b7 b6 b5 B	-				→ → →	0 0 0	[1] MSG	0 0 1	MSG	0 1 0	MSG	0 1 1	MSG	1 0 0	MSG	1 0 1	MSG	1 1 0	MSG	1 1 1	MSG
ⁱ tsss ↓		03 1 ↓	52 ↓	b1 ↓	$\begin{array}{c} \text{COLUMN} \\ \rightarrow \\ \text{ROW} \downarrow \end{array}$	0		1		2		3		4		5		6		7	
0	(0	0	0	0	NUL		DLE		SP	1	0	1	@	1	Р		•	1	р	
0	(0	0	1	1	SOH	GTL	DC1	LLO	!		1		A		Q		a		q	
0	(0	1	0	2	STX		DC2		"		2		В		R		b		r	
0	(С	1	1	3	ETX		DC3		#		3		C		S		c		s	
0	1	1	0	0	4	EOT	SDC	DC4	DCL	\$	Liste	4	Liste	D	Liste	Т	Liste	d		t	
0	1	1	0	1	5	ENQ	PPC	NAK	PPU	%	Listener address (MLA) assigned to equipment	5	Listener address	E	Listener address	U	Listener address (MLA) assigned to equipment	e		u	
0	1	1	1	0	6	ACK		SYN		&	idress	6	Idress	F	idress	V	Idress	f	Meaning defined by PCG	v	 Meaning defined
0	1	1	1	1	7	BEL		ETB		,		7	(MLA	G	MLA –	W		g	ng def	w	ng def
1	()	0	0	8	BS	GET	CAN	SPE	() assig	8) assig	Н) assig	X) assig	h	ined b	x	ined by
1	()	0	1	9	HT	TCT	EM	SPD)	jned to	9	ned to	Ι	gned to	Y	gned to	i	y PCC	у	y PCG
1	()	1	0	А	LF		SUB		*	equip	:	(MLA) assigned to equipment	J	assigned to equipment	Z	equip	j	_ "_	z	_ 4' _
1	(5	1	1	В	VT		ESC		+	ment –	;	ment	К	ment	[ment	k	<u>⊢</u> −	{	<u>⊢</u> _
1	1	1	0	0	С	FF		FS		,		<		L		\	F -	1			
1	1	1	0	1	D	CR		GS		_		=		М	[]]	$ \begin{bmatrix} - \\ - \end{bmatrix}$	m		}	
1	1	1	1	0	Е	SO		RS				>		N		^		n		~	
1	1	1	1	1	F	SI		US		/	ļ	?	UNL	0		_	UNT	0		DEL	
							Iress nmand up CG)		versal nmand up 2G)	\	Ad Gr	ten dress oup AG)	/	<u>\</u>	Gr	lk Idress roup AG)	/				

[1] MS	G=IN1	TERFA	CE MF	ESSAG	E (Sent	by AT	N of T	rue, Low level)		Table		7.0		5715	oigii	ments	
[2] b1= SDC	DI01	.b7=DI	07 (b1	through	h b7 co	rrespon	d to DI	01 to DI07 sequence.)GTL	Address	character	A	ddres	s swich	n settin	g	Primary	Fastan
PPC			o Local ct Devi		ır				Talk	Listen	5	4	3	2	1	address	Factory address
GET TCT			llel Pol 1p Exec						b ₇ b ₆	b ₇ b ₆	b ₅	b ₄	b ₃	b ₂	b ₁		set
LLO DCL		Take	Contr	ol	5501				1 0	0 1	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	Decimal	device
PPU		Dev	al Lock ice Clea	ar					@	SP	0	0	0	0	0	0	
SPE SPD		Para	llel Pol al Poll l	1 Unco	nfigure				А	!	0	1	0	0	1	1	
UNL			al Poll I						В	"	0	0	0	1	0	2	
UNT (ACG)		Unli Unta							C	#	0	0	0	1	1	3	
(UCG)		Add	ressed (D	\$	0	0	1	0	0	4	
(LAG) (TAG)		Univ	ersal C	Comman	nd Grou	ıp			Е	%	0	0	1	0	1	5	
(PCG)		Talk	en Addi Addre	ss Groi	ຫ້				F	&	0	0	1	1	0	6	
(SCG)		Prim	ary Co	mmand	Group)			G	'	0	0	1	1	1	7	
		Seco	ondary (Comma	and Gro	oup			Н	(0	1	0	0	0	8	
Г	able	• A-2	2 Int	erfa	ce M	lessa	ade (Groups	Ι)	0	1	0	0	1	9	
							-		J	*	0	1	0	1	0	10	
D	D	D	D	D	D	D	D	Interface	K	+	0	1	0	1	1	11	
1	1 0	1 0	1	1	1	1 0	1 0	message group	L	,	0	1	1	0	0	12	
8	7	6	5	4	3	2	1	(G)	М	-	0	1	1	0	1	13	Printer
									N	•	0	1	1	1	0	14	Plotter
×	0	0	0	b4	b3	b2	b1	Addressed command G	0	/	0	1	1	1	1	15	
								command G	Р	0	1	0	0	0	0	16	
×	0	0	1	b4	b3	b2	b1	Universal	Q	1	1	0	0	0	1	17	
^	0	0	1	04	05	02	01	command G	R	2	1	0	0	1	0	18	
								Listen address	S	3	1	0	0	1	1	19	
×	0	1	b5	b4	b3	b2	b1	G	T	4	1	0	1	0	0	20	
								-	U	5	1	0	1	0	1	21	
×	0	1	1	1	1	1	1	Unlisten (UNL)	V	6	1	0	1	1	0	22	
	0	1	1	1	1	1	1		W	7	1	0	1 0	1 0	1	23	
								Talker Address	X Y	8 9	1 1	1	0	0	1	24 25	
×	1	0	b5	b4	b3	b2	b1	G	Z	9	1	1	0	1	0	23 26	
								-			1	1	0	1	1	20 27	
×	1	0	1	1	1	1	1	Untalk (UNT)		; <	1	1	1	0	0	27	
	•		-		-		•		1	=	1	1	1	0	1	28 29	
								Secondary		= >	1	1	1	1	0	29 30	
×	1	1	b5	b4	b3	b2	b1	command G	?		1	1	1	1	1	30	UNL,UNT
									L			1		1	-	51	0110,0111

Table A-3 Address Assignments

Notes:

Appendix B Comparison Table of Controllers' GPIB Instructions

		Controller		
Function	PACKET V (Anritsu)	PC-9800 series (NEC)	IBM-PC	HP9000 series
Outputs data to a device	WRITE @ device number; data	PRINT @ listener address; data	CALL IBWRT()	OUTPUT device selector;data
Outputs binary data to a device	BIN WRITE @ device number; data	WBYTE command;data		
Assigns data entered from a device to a variable	READ @ device number:variable	INPUT @ talker address, listener address;variable LINE INPUT @ talker address, listener address;variable	CALL IBRD()	ENTER device selector;variable
Assigns binary data entered from a device to a variable	BIN READ @ device number; variable	RBYTE command;variable		
Initializes an interface function	IFC @ select code	ISET IFC	CALL IBSIC()	ABORT select code
Turns REN line on	REN @ select code	ISET REN	CALL IBSRE()	REMOTE device selector (select code)
Turns REN line off	LCL @ select code (sets all devices local) LCL @ device number (sets only specified devices to listeners, and sends out GTL command)	IRESET REN WBYTE &H3F,listener address,secondary address,&H01	CALL IBSRE() CALL IBLOC()	LOCAL device selector (select code) LOCAL device selector (select code + primary address)
Outputs interface messages (messages) and data	COMMAND @ select code : character string for message [;data]		CALL IBCMD() CALL IBCMDA() (asynchronous)	SEND select code ;message string
Triggers a specified device	TRG @ device number	WBYTE &H3F,listener address,secondary address,&H08	CALL IBTRG()	TRIGGER device selector

Appendix B Comparison Table of Controllers' GPIB Instructions

		Controller		
Function	PACKET V (Anritsu)	PC-9800 series (NEC)	IBM-PC	HP9000 series
Initializes devices	DCL @ select code (all devices bearing a specified select code) DCL @ device number (specified devices only)	WBYTE &H3F,&H14 WBYTE &H3F, listener address, secondary address,&H04	CALL IBCLR()	CLEAR device selector (selector code) CLEAR device selector (selector code + primary address)
Disables a device from being switched over from remote to local	LLO @ select code	WBYTE &H3F, &H11		LOCAL LOCKOUT
Transfers control to a specified device	RCT @ device number	WBYTE talker address, &H09	CALL IBPCT()	PASS CONTROL
Sends out a service request	SRQ @ select code	ISET SRQ	CALL IBRSV()	REQUEST select code
Performs serial polling	STATUS @ device number	POLL	CALL IBRSP()	SPOLL (device selector) (function)
Sets a terminator code	TERM IS	CMD DELIM	CALL IBEOS() CALL IBEOT()	
Sets a limit value for checking a timeout		CMD TIMEOUT	CALL IBTOM()	

Appendix C Index

• The numbers on the right indicate section and paragraph numbers in this operation manual.

AF Mesure command Analog tester commands ASCII code table	2.5.3
Bit definition of END event status register	
Bit definition of ERR event status register	
Bit definition of standard event status register	
Bus initialization by the IFC statement	6.2
Character program data	4.2 (5), 4.3 (5)
Clearing the STB register by the *CLS common command	5.2.3 (4)
Connecting Devices with GPIB Cables	3.1
Connection	3
Connection of RS-232C interface signal	3.3
Definition of MSS	5.2.3 (3)
Device initialization by PRE/INI/IP command	
Device initialization by the *RST command	
Device message format	
Device message list	
Device messages	
Device status at power-on	
Device-dependent summary messages	
	5.0.1
ESB and MAV summary messages	
ESB summary message	
Example of system configuration using RS-232C/GPIB	
Extended event status register	5.5
GPIB instruction comparison table of the controller	APPENDIX B
GPIB specifications	2.3
IEEE488.2 common commands and supported commands	5.1
Initial setting	
Initialization for message exchange by DCL and	
SDC statements	6.3
INSTRUMENT SETUP command	
MAN	501(0)
MAV summary messages	
MT8801C common commands	2.5.1

Appendix C Index

Overview	
Overview (device message)	
Overview (device message format) 4.1	
Program data	(4)
Program message	(2)
Program message format	
Program message terminator	(1)
Program message unit	
	. /
Query error details	2
Reading and clearing the STB register 5.2.	3
Reading by the *STB common query 5.2.	3 (2)
Reading by using serial polling 5.3.	3 (1)
Reading the SRE register	(1)
Reading, writing, and clearing the extended event status	
enable register	4
Reading, writing, and clearing the extended event status	
register	3
Reading, writing to and clearing the standard event status	
enable register	4
Reading, writing to and clearing the standard event status	
register	3
Remote control functions 1.2	
Response data	(4)
Response message	2)
Response message format	
Response message terminator	(1)
Response message to input the waveform data using	
binary data	(8)
	(3)
Response message unit 4.3	
Response message unit 4.3 Response wait by the status register 5.6.	+
Response wait by the status register 5.6.	+
Response wait by the status register	
Response wait by the status register	
Response wait by the status register 5.6.4 RS-232C specifications 1.4 RX Mesure command 2.5.4	6
Response wait by the status register 5.6. RS-232C specifications 1.4 RX Mesure command 2.5. Service request enable operation 5.3	6
Response wait by the status register 5.6. RS-232C specifications 1.4 RX Mesure command 2.5. Service request enable operation 5.3 Service request wait by the status register 5.6.	6
Response wait by the status register5.6.RS-232C specifications1.4RX Mesure command2.5.Service request enable operation5.3Service request wait by the status register5.6.Setting RS-232C interface conditions3.4	6
Response wait by the status register5.6.RS-232C specifications1.4RX Mesure command2.5.Service request enable operation5.3Service request wait by the status register5.6.Setting RS-232C interface conditions3.4Setting the addresses3.2	6
Response wait by the status register 5.6. RS-232C specifications 1.4 RX Mesure command 2.5. Service request enable operation 5.3 Service request wait by the status register 5.6. Setting RS-232C interface conditions 3.4 Setting the addresses 3.2 Setting the items relating to remote control and panel 3.4	5
Response wait by the status register 5.6. RS-232C specifications 1.4 RX Mesure command 2.5. Service request enable operation 5.3 Service request wait by the status register 5.6. Setting RS-232C interface conditions 3.4 Setting the addresses 3.2 Setting the items relating to remote control and panel 3.5	5
Response wait by the status register 5.6. RS-232C specifications 1.4 RX Mesure command 2.5. Service request enable operation 5.3 Service request wait by the status register 5.6. Setting RS-232C interface conditions 3.4 Setting the addresses 3.2 Setting the items relating to remote control and panel 3.5 Setup Common Parameter command 2.5.4	5

Status messages 2.4, 5
String program data 4.2 (7)
String response data
Suffix code 2.2
Techniques for synchronizing the MT8801C
with a controller 5.6
TX Mesure with SG 2.5.5.3
TX Mesure command 2.5.5.2
Updating the SRE register 5.3 (1)
Value program data
Value response data
Wait for response after *OPC? query is sent 5.6.2
Wait for response by executing the SWP or TS command 5.6.1
Wait for service request by the *OPC command 5.6.3

MT8801C

Radio Communication Analyzer

Option 07: Spectrum Analyzer Operation Manual (Panel Operation)

Table of Contents

ion 1 General	1-1
General	1-2
Manual Composition	1-3
Specifications	1-4
	ion 1 General General Manual Composition Specifications

Section 2 Panel Layout 2-1

3.1	Basic Operation	3-3
3.2	Position of Operation Keys	3-9
3.3	Setting Observation of Frequency	3-10
3.4	Level Range Setting	3-15
3.5	Marker Function	3-17
3.6	Marker Search Function	3-25
3.7	Coupled Function	3-30
3.8	Selecting the Display Mode	3-35
3.9	Selecting the Sweep Method	3-50
3.10	Measurement	3-58

Section 4 Peformance Tests 4-1

4.1	Requirement for Performance Tests	4-2
4.2	Instruments Required for Performance Test	4-3
4.3	Performance Tests	4-4

Appendixes	App-1
------------	-------

Appendix A Soft-Key Menu	A-1
Appendix B Keywords Index	B-1

Section 1 General

1.1	General	1-2
1.2	Manual Composition	1-3
1.3	Specifications	1-4

1.1 General

The MT8801C Digital Mobile Radio Transmitter Tester is a test platform having all the hardware needed to test digital mobile communication terminals. The performance of radio equipment can be efficiently evaluated by using it with optional test software.

The frequency usage of radio equipment is becoming more efficient, and the equipment is becoming faster and more digitalized. The MT8801C Spectrum Analyzer function (option 07) is suitable for signal analysis of such equipment.

Its C/N, distortion, frequency and level accuracy, and other basic performances are excellent. Operation can be performed easily using software menu screens.

Because frequency domain and time domain waveforms can be switched and displayed with one touch, signal analysis of radio equipment can be carried out efficiently.

A MEASURE function allows measurements corresponding to various applications. Noise measurements, C/N ratio measurements, occupied frequency bandwidth measurements, adjacent channel leakage power measurements, mean power measurements, and evaluation of other radio equipment performances can be easily performed.

Because the Spectrum Analyzer function (option 07) uses high-speed digital signal processing technology, its main transmitting and measurements can be performed quickly and accurately.

1.2 Manual Composition

This manual is made up of the following sections.

Section 1 General

Describes the introduction, function specifications and performance of this instrument.

Section 2 Panel Layout

Explains the basic items for operating this equipment.

Section 3 Operation

Explains basic operation and how to operate for each measurement item.

Section 4 Performance Test Explains the performance test method for this instrument.

Appendix A Soft-Key Menu

Appendix B Keywords Index

1.3 Specifications

The MT8801C Digital Mobile Radio Transmitter Tester option 07 specifications are listed in Table 1-1 below.

	Frequency setting range		0 Hz to 3 GHz (Band 0)/10 MHz to 3 GHz (Band 1)		
	Frequency display accuracy		Setting resolution: 1 Hz ± (display frequency × reference frequency accuracy + span x span accuracy)		
	Marker frequency display accuracy		Normal marker: Same as display frequency accuracy,		
		nay accuracy	Digital marker: Same as span accuracy		
			Span setting range: 0 Hz and 10 kHz to 3 GHz (Band 0)		
	Frequency span		0 Hz and 10 kHz to 2.99 GHz (BAND 1)		
S			Span accuracy: ±2.5%		
Frequency			Setting range: 300 Hz to 1 MHz (3 dB BW), 1-3 sequence		
ed	Resolution bandwidth		Accuracy: ±2% (300 Hz to 300 kHz), ±10% (1 MHz)		
цĒ			Selectivity (60 dB: 3 dB): <5: 1		
			3 Hz to 100 kHz (1-3 sequence) and thru		
	Video bandwidth		(The resolution bandwidth limits the setting range.)		
			≤–95 dBc/Hz (frequency 1 GHz, 10 kHz offset)		
	Sideband noise		\leq -115 dBc/Hz (frequency 1 GHz, 10 kHz offset)		
			HPF On/Off (Band 1)		
	HPF		Bandwidth: 1.6 GHz to 3 GHz		
			Band 1		
			Continuous average power: +40 dBm (MAIN connector)		
		Maximum input level	+20 dBm (AUX connector)		
			DC: 0 V		
			At 1 kHz resolution bandwidth, 10 Hz video bandwidth		
			At MAIN connector, input attenuator 20 dB		
			≤–90 dBm (10 MHz to 2.2 GHz)		
	Level measurement	Average noise level	≤–85 dBm (>2.2 GHz)		
		_	At AUX connector, input attenuator 0 dB		
			≤–110 dBm (10 MHz to 2.2 GHz)		
			≤–105 dBm (>2.2 GHz)		
		Residual response	≤-70 dBm (MAIN connector, input attenuator 20 dB)		
		Tiesiddai Tesponse	≤-90 dBm (AUX connector, input attenuator 0 dB)		
			At MAIN connector, reference level +10.1 to +40 dBm, 0 to -50 dB of reference level		
Ð	Overall level accuracy	1	±1.5 dB		
Amplitude			At AUX connector, reference level –9.9 to +20 dB, 0 to –50 dB of reference level		
ja ja			±1.5 dB		
A			Setting range: -60 to +50 dBm (MAIN connector)		
			-80 to +30 dBm (AUX connector)		
			Setting resolution: 0.1 dB		
			Accuracy: When input attenuator, resolution bandwidth, video bandwidth, and		
	Reference level		sweep time are set to auto at frequency 100 MHz and span 2 MHz		
			after calibration		
			MAIN connector		
			±0.5 dB (+10.1 to +40 dBm) ±1.0 dB (-60 to +10 dBm)		
			$\pm 1.0 \text{ dB} (-60 \text{ to } + 10 \text{ dB} \text{ m})$ AUX connector		
			±0.5 dB (-9.9 to +20 dBm)		
			$\pm 1.0 \text{ dB} (-80 \text{ to } -10 \text{ dBm})$		
			Resolution bandwidth switching deviation: ±0.1 dB referenced to 3 kHz resolution		
			bandwidth bandwidth switching deviation. ±0.1 db referenced to 5 kHz resolution		
			±0.5 dB at input attenuator 30 dB (AUX: 10 dB), ambient temperature 18 to 28°C,		
	Frequency response		referenced to 100 MHz		
L					

 Table 1-1
 Option 07:
 Spectrum Analyzer (1/2)

Table 1-1 Option 07: Spectrum Analyzer (2/2)

		Frequency 10 MHz to 2.2 GHz, reference level ≥+0 dBm (MAIN connector), ≥–20 dBm (AUX connector)				
e	Log linearity	±0.5 dB (0 to –50 dB, resolution bandwidth ≤1 MHz)				
Amplitude		±1.0 dB (0 to −70 dB, resolution bandwidth ≤30 kHz)				
j d		±1.0 dB (0 to –80 dB, resolution bandwidth ≤1 kHz)				
A		Second harmonic distortion: Mixer input level –30 dBm				
	Spurious response	≤–55 dBc (input frequency 10 to 100 MHz)				
		≤–60 dBc (input frequency 100 to 1500 MHz)				
		100 ms to 1000 s (frequency domain sweep)				
	Sweep time setting	100 ms to 1000 s (time domain sweep, resolution bandwidth ≤1 kHz)				
	range	10 ms to 1000 s (time domain sweep, 3 kHz <resolution <math="" bandwidth="">\leq10 kHz)</resolution>				
	-	1 ms to 1000 s (time domain sweep, resolution bandwidth ≤30 kHz)				
	Trigger switch	FREERUN, TRIGGERED				
Sweep		WIDEIFVIDEO : Bandwidth (3 dB): ≥20 MHz				
Ň	Trigger source	EXT : Trigger level: TTL level				
က		Trigger slope : RISE/FALL				
	Trigger delay	Range: 0 µs to 100 ms, resolution: 2 µs				
	- ingger delag	Displays the spectrum of the signal input in the specified gate zone on the frequency domain display.				
	Gate sweep	Gate delay: Range: 2 μ s to 100 ms from trigger point, resolution: 2 μ s				
	Gate Sweep	Gate width: Range: 2 μ s to 100 ms from gate delay point, resolution: 2 μ s				
		Signal search: PEAK \rightarrow CF, PEAK \rightarrow REF				
	Marker function	Zone marker: NORMAL, DELTA				
		Marker \rightarrow function: MARKER \rightarrow CF, MARKER \rightarrow REF, ZONE \rightarrow SPAN				
		Peak search: PEAK, NEXT PEAK, NEXT RIGHT PEAK, NEXT LEFT PEAK				
		Noise power: dBm/Hz, dBm/ch				
		C/N ratio: dBc/Hz, dBc/ch				
	MEASURE function	Occupied frequency bandwidth: N% of POWER method, XdB down method				
		Adjacent channel leakage power: REF: TOTAL POWER method, REF: REF LEVEL method				
		Specified channel display (2 channels × 2), graph display				
	Novele en ef dete vertete	Average power in burst: Average power in specified time range of time domain waveform				
Functions	Number of data points	501 points				
Ğ		POS PEAK : Displays the highest point among the sample points				
n	Detection modes	NEG PEAK : Displays lowest point among the sample points				
LTTT -		SAMPLE : Displays the instantaneous value at the sample point				
		Trace A : Displays the frequency spectrum.				
	Display function	Trace B : Displays the frequency spectrum.				
		Trace Time : Displays the time domain waveform at the center frequency.				
		NORMAL (Update display)				
		VIEW (Display hold)				
		MAX HOLD (Maximum envelop display)				
	Storage function	MIN HOLD (Minimum envelop display)				
		AVERAGE (Average value display)				
1		CUMULATIVE (cumulative display)				

The contents of this section are the same as the contents of Option 01 [3.1 Panel Layout] in this manual. Therefore, refer to Option 01 [3.1 Panel Layout].

Section 3 Operation

This section describes how to operate the spectrum analyzer.

Section 3.1 describes the basic operation procedure using switching the operation screen.

Section 3.2 and later sections describe the operation procedure for each function key in detail.

in the following descriptions indicates main function keys (F1 to F6), and ______ indicates function keys (F7 to F12).

3.1	Basic	Operation	3-3
	3.1.1	Signal display	3-3
	3.1.2	Marker operation	3-7
	3.1.3	Screen hard copy	3-8
3.2	Positic	on of Operation Keys	3-9
3.3	Setting	g Observation of Frequency	3-10
	3.3.1	Center-Span Mode	3-10
	3.3.2	Start-Stop Mode	3-11
	3.3.3	Setting Step Size with Step Keys	3-12
	3.3.4	Setting Full Span/Zero Span	3-13
	3.3.5	Frequency Bands	3-14
3.4	Level	Range Setting	3-15
	3.4.1	Setting Reference Level	3-15
	3.4.2	Setting Log Scale	3-15
	3.4.3	Setting Reference Level Step Size	3-16
	3.4.4	Setting Attenuator	3-16
3.5	Marke	r Function	3-17
	3.5.1	Zone Marker/Current Maker	3-17
	3.5.1 3.5.2	Zone Marker/Current Maker Normal Marker	
			3-20
	3.5.2	Normal Marker	3-20 3-21
	3.5.2 3.5.3	Normal Marker Delta Marker	3-20 3-21 3-22
	3.5.2 3.5.3 3.5.4	Normal Marker Delta Marker Mkr \rightarrow CF/Mkr \rightarrow RLV	3-20 3-21 3-22 3-23
	3.5.2 3.5.3 3.5.4 3.5.5	Normal Marker Delta Marker Mkr \rightarrow CF/Mkr \rightarrow RLV Zone \rightarrow Span	3-20 3-21 3-22 3-23 3-24
3.6	3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7	Normal Marker Delta Marker Mkr \rightarrow CF/Mkr \rightarrow RLV Zone \rightarrow Span Marker Off	3-20 3-21 3-22 3-23 3-24 3-24
3.6	3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7	Normal Marker Delta Marker Mkr \rightarrow CF/Mkr \rightarrow RLV Zone \rightarrow Span Marker Off Display Line	3-20 3-21 3-22 3-23 3-24 3-24 3-25
3.6	3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 Marke	Normal Marker Delta Marker Mkr \rightarrow CF/Mkr \rightarrow RLV Zone \rightarrow Span Marker Off Display Line r Search Function	3-20 3-21 3-22 3-23 3-24 3-24 3-25 3-25
3.6	3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 Marke 3.6.1	Normal Marker Delta Marker Mkr \rightarrow CF/Mkr \rightarrow RLV Zone \rightarrow Span Marker Off Display Line r Search Function Peak Search	3-20 3-21 3-22 3-23 3-24 3-24 3-25 3-25
3.6	3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 Marke 3.6.1 3.6.2	Normal Marker Delta Marker Mkr \rightarrow CF/Mkr \rightarrow RLV Zone \rightarrow Span Marker Off Display Line r Search Function Peak Search Next Peak Search Next Right Peak Search/Next Left Peak Search	3-20 3-21 3-23 3-24 3-24 3-25 3-25 3-25 3-25
3.6	3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 Marke 3.6.1 3.6.2	Normal Marker Delta Marker Mkr \rightarrow CF/Mkr \rightarrow RLV Zone \rightarrow Span Marker Off Display Line r Search Function Peak Search Next Peak Search Next Right Peak Search/Next Left Peak	3-20 3-21 3-23 3-24 3-24 3-25 3-25 3-25 3-25
3.6	3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 Marke 3.6.1 3.6.2 3.6.3	Normal Marker Delta Marker Mkr \rightarrow CF/Mkr \rightarrow RLV Zone \rightarrow Span Marker Off Display Line r Search Function Peak Search Next Peak Search Next Right Peak Search/Next Left Peak Search	3-20 3-21 3-22 3-24 3-24 3-25 3-25 3-25 3-25 3-25

3.7	Coupled Function			
	3.7.1	Resolution Bandwidth (RBW) and Sweep		
		Time	3-30	
	3.7.2	Video Bandwidth (VBW)	3-32	
	3.7.3	Input Attenuator (Attenuator)	3-33	
	3.7.4	Automatic Calibration	3-34	
3.8	Selecti	ng the Display Mode	3-35	
	3.8.1	Trace Freq	3-35	
	3.8.2	Time Domain	3-37	
	3.8.3	Storage Mode	3-41	
	3.8.4	Setting Storage Mode	3-43	
	3.8.5	Averaging Function	3-44	
	3.8.6	Max Hold and Min Hold Functions	3-47	
	3.8.7	Explanation of Detection Mode	3-48	
	3.8.8	Selecting Detection Mode	3-49	
3.9	Selecti	ng the Sweep Method	3-50	
	3.9.1	Continuous Sweep Mode	3-50	
	3.9.2	Single Sweep Mode	3-50	
	3.9.3	Trigger Mode	3-51	
	3.9.4	Explanation of Time Gate Function	3-53	
	3.9.5	Creating a Gate Control Signal	3-54	
	3.9.6	Setting Gate Function	3-55	
3.10	Measu	rement	3-58	
	3.10.1	Measurement Function	3-58	
	3.10.2	Measurement Examples	3-61	

3.1 Basic Operation

The basic operation rules and features of the spectrum analyzer are explained using basic operations.

The operation contents are shown on the right.

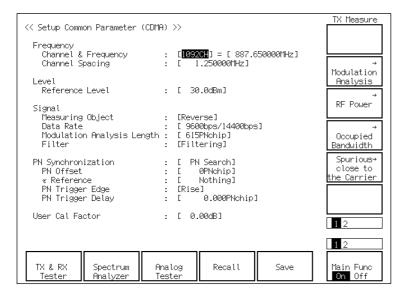
The following descriptions assume that an external 500 MHz signal is applied to the input connector.

We recommend that you read this section while actually operating the MT8801C.

- 3.1.1 Signal display
- 3.1.2 Marker operation
- 3.1.3 Screen hard copy

3.1.1 Signal display

(1) Turn on the power.

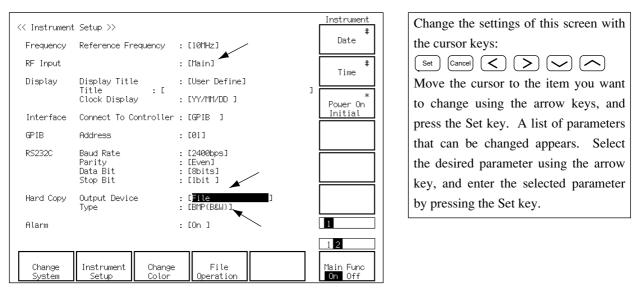

Press the rear panel power switch, then press the front panel power switch. The Setup Common Parameter screen shown below is displayed. (Fig. 3-1)

<pre><< Setup Common Parameter (CDMF</pre>	1) >>	TX Measure
Frequency Channel & Frequency Channel Spacing	: [<mark>1092CH</mark>] = [887.650000MHz] : [1.250000MHz]	→ Modulation
Level Reference Level	: [30.0dBm]	Analysis → RF Power
Signal Measuring Object Data Rate Modulation Analysis Length Filter	: [Reverse] : [9600bps/14400bps] : [615PNchip] : [Filtering]	→ Occupied Bandwidth
PN Synchronization PN Offset ⊄ Reference PN Trigger Edge PN Trigger Delay	: [PN Search] : [0PNchip] : [Nothing] : [Rise] : [0.000PNchip]	Spurious→ close to the Carrier
User Cal Factor	: [0.00dB]	1 2
TX Measure		1 Main Func On Off
	Fig. 3-1	

This is the radio equipment test software setup screen. Switch to the MT8801C initialization and spectrum analyzer mode screen.

(2) MT8801C initialization.

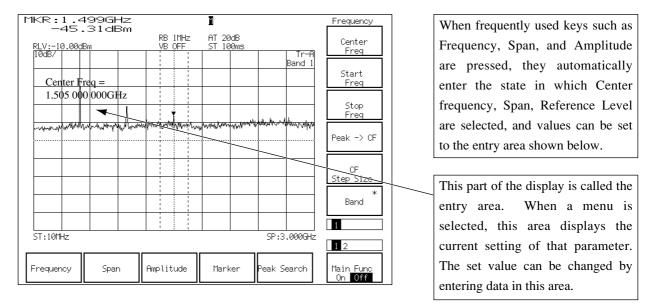
Press the [Main Func] key (F6). (Fig. 3-2)



When the Main Func key is On, keys F1 to F5 indicate the MT8801C measuring instrument modes.

When the Main Func key is Off, keys F1 to F5 indicate the menus related to the current screen.

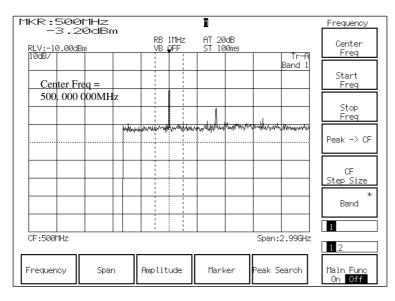
Press the Next Menu key (1). Press the Instrument Setup key (F2). (Fig. 3-3)



Set the input connector (RF Input) and hard copy here. Set the parameters indicated by the arrows in Fig. 3-3 to [Main], [Printer (Parallel)], and [ESC/P] respectively.

(3) Enter the spectrum analyzer mode.

Return to the screen of Fig. 3-2 by pressing the Next Menu key (). Enter the spectrum analyzer mode by pressing the Spectrum Analyzer key (F2).


(4) Move the signal to the center of the screen.

Press the Frequency key (F1). (Fig. 3-4)

Set the center frequency to 500 MHz by entering 500 MHz from the numeric keypad. (Fig. 3-5)

There are three methods of entering parameters: direct entry from the numeric keypad, step key, and rotary knob.

Fig. 3-5

(5) Expand and display the signal.

Press the Span key (F2), then expand the signal by pressing the step key several times. (Fig. 3-6)

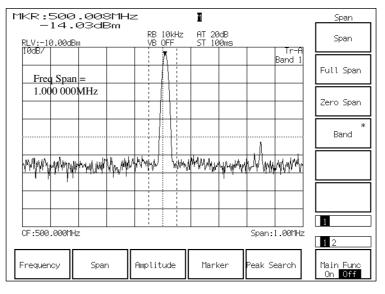
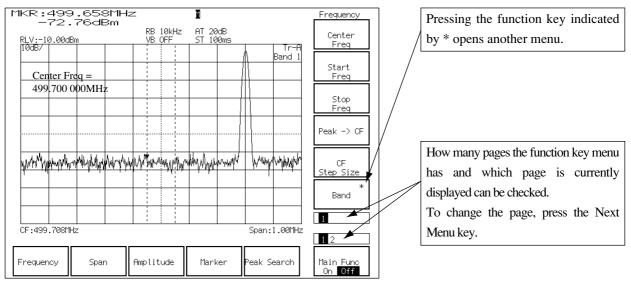


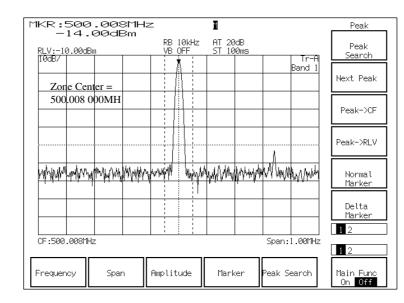
Fig. 3-6

3.1.2 Marker operation

Check that the signal frequency and level are displayed in the marker display area. The zone marker automatically captures the peak signal in the zone range and displays its frequency and level.

To check the Peak \rightarrow CF function, move the signal away from the center of the screen. Press the Frequency key (F1), then change Center Freq by turning the rotary knob. (Fig. 3-7)




Fig. 3-7

Press the Peak Search key (F5). (Fig. 3-8) The marker seizes the signal.

MKR:500	0.008M⊢ .02dBm	Iz	M		Peak 🚽	
RLV:-10.00d	Bm	RB 10kHz VB OFF	AT 20dB ST 100ms	! Tr-A	Peak Search	
10067			<u> </u>	Band 1	Next Peak	
Zone Ce	nter = 000MHz					
500.008					Peak->CF	
					Peak->RLV	
yerter Myggywysydy	mMuhhhyhdinyh	un Manana and An	nthyphyphynight	Willywyhyh	Normal Marker	
					Delta Marker	
CF:499.708M	H7			ipan:1.00MHz	1 2	
Frequency	Span	Amplitude	Marker Pe	ak Search	Main Func On Off	

The menu title is displayed above the function keys. You can check which function key corresponds to the current menu status.

Fig. 3-8

Press the <u>Peak \rightarrow CF key (F9). The signal moves to the center of the screen. (Fig. 3-9)</u>

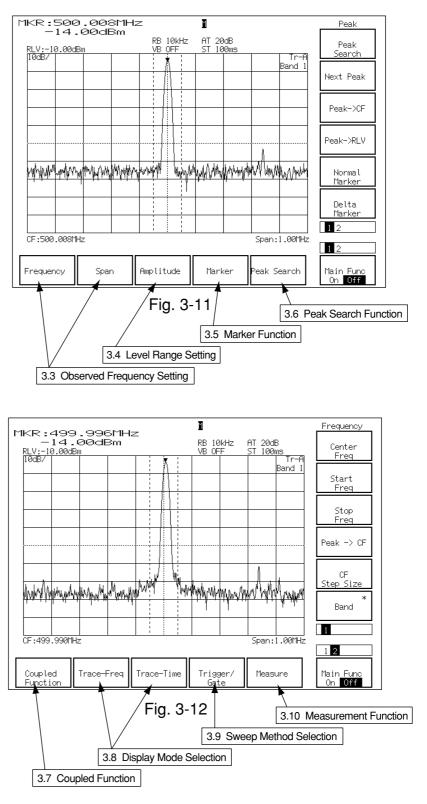
Fig. 3-9

3.1.3 Screen hard copy

The screen display can be printed on a printer via the rear panel parallel interface. Any ESC/P command system printer can be used.

Press the Copy key at the top of the numeric keypad.

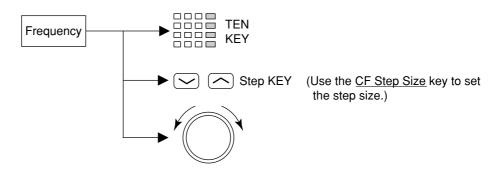
The screen currently displayed is printed.

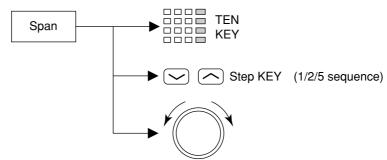

The screen display data can be stored to a floppy disk by setting the Hard Copy in the screen below to [file] and [BMP (B&W)].

<< Instrument	Setup >>				Instrument #
Frequency	Reference Frequency	:	[10MHz]		Date
RF Input		:	[Main]		# Time
Display	Display Title Title : [:	[User Define]	1	111110
	Clock Display	:	[YY/MM/DD]	Г	* Power On
Interface	Connect To Controller	:	[GPIB]		Initial
GPIB	Address	:	[01]		
RS232C	Baud Rate Parity Data Bit Stop Bit	:	[2400bps] [Even] [8bits] [1bit]		
Hard Copy	Output Device Type		[File]] [BMP(B&W)]		
Alarm		:	[0n]		1
				_	1 2
Change System	Instrument Change Setup Color		File Operation		Main Func On Off

Fig. 3-10

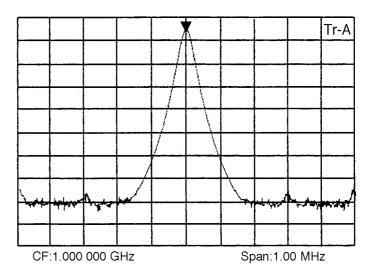
3.2 Position of Operation Keys


This sections shows the position of the operation keys described in Section 3.3 and subsequent sections.


3.3 Setting Observation of Frequency

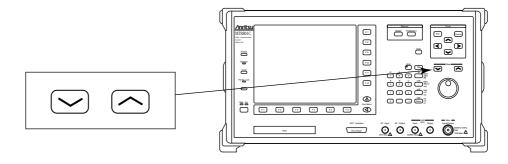
3.3.1 Center-Span Mode

(1) Setting center frequency



(2) Setting frequency span

Note:


When frequency span is 200 kHz or less, warming up might be necessary until the observation frequency becomes stable after turning on the power.

3.3.2 Start-Stop Mode (1) Start frequency Frequency Start Freq (2) Stop frequency (2) Stop frequency Frequency Stop Freq KEY KEY KEY KEY KEY KEY KEY KEY

- Because the step keys [) are the step keys for the center frequency, the start and stop frequencies are also changed.
- The stop frequency may also vary depending on the values of the frequency span setting resolution and start frequency.

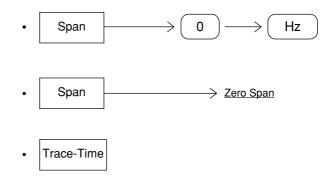
3.3.3 Setting Step Size with Step Keys

To use the step keys [\bigcirc] to change the step size of the center frequency, register the step size as follows:

3.3.4 Setting Full Span/Zero Span

(1) Setting Full Span

In the normal operating state, pressing $\stackrel{\text{Preset}}{\longrightarrow}$ the key allows the entire frequency range of the spectrum analyzer to be swept over the full span. However, this setting also initializes the parameters except the frequency range.

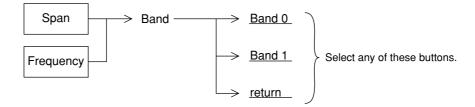

To set the full span and leave the other parameters unchanged, perform the following key operations.

For Band 0, 0 to 3 GHz For Band 1, 10 MHz to 3 GHz

(2) Setting Zero Span

The Spectrum Analyzer can operate as a selective level meter in which the horizontal axis is graduated as a time axis by setting the frequency span to 0 Hz. The rising and falling edges of burst waves can also be observed and measured. Performing any of the following key operations allows the spectrum analyzer to operate in the zero panel (time domain) mode.

For further details on the zero span (time domain) mode, see SECTION 3-8, "SE-LECTING THE DISPLAY MODE."


3.3.5 Frequency Bands

In the Spectrum Analyzer, the 0 to 3 GHz frequency range consists of the following two bands:

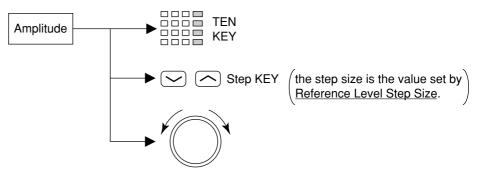
- Band 0 0 to 3 GHz
- Band 1 10 MHz to 3 GHz

In the initial state, the wide dynamic range Band 1 mode that is selected.

Perform the following to set the Band 0, when the observe the frequency lower 10 MHz.

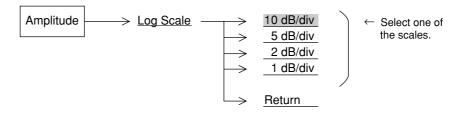
3.4 Level Range Setting

The following table shows the reference level (top of amplitude scale) range of this spectrum analyzer.

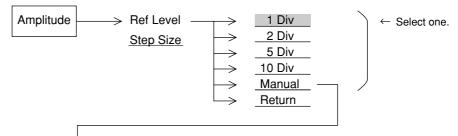

Input terminal	Units	Reference level range
Main	dBm	- 60 to +50 dBm
Aux	dBm	– 80 to +30 dBm
	.1 .	1 11/50 0 : 0 10

dBm: Units system that assumes 1 mW/50 $\Omega\,$ is 0 dBm.

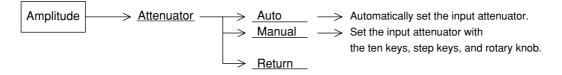
Use the unit key [(dBm) and (Enter)] is possible.


3.4.1 Setting Reference Level

Select the reference level (top graticule of the amplitude scale) by performing the following key operations.


3.4.2 Setting Log Scale

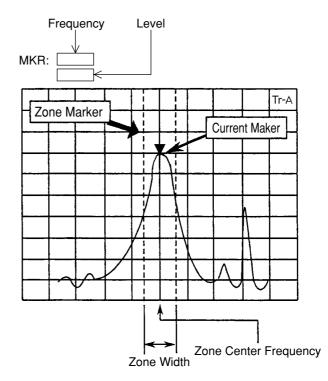
To set the amplitude scale to log scale, perform the following key operations.


3.4.3 Setting Reference Level Step Size

To change the reference level with the step keys [\frown], set the step size by performing the following key operations.

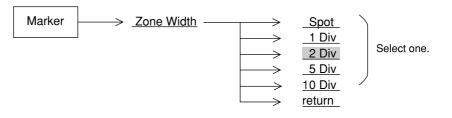
 \longrightarrow Manually enter the step size in dB units from the ten keys.

3.4.4 Setting Attenuator



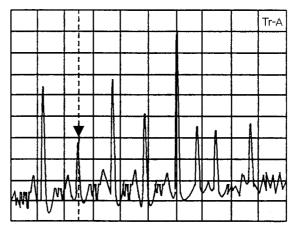
3.5 Marker Function

3.5.1 Zone Marker/Current Maker

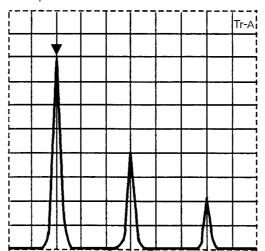

The part enclosed in dotted lines in the center of the screen shown in the figure below is called the zone marker.

The current marker within this zone marker normally moves to the maximum level. The frequency (or time for time domain mode) and level at the current marker point (intensified point) are displayed at the top left-hand corner of the screen.

(1) Changing Zone Marker Width


The zone marker width is initially set to 1 division, but can be changed from 1 point to 10 divisions by performing the following key operations.

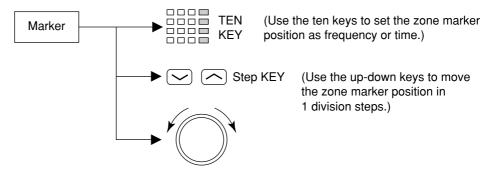
The zone marker width can be arbitrarily set from 1 point to 10 divisions by rotary knob.


The zone marker width can be arbitrarily set from 1 point to 10 divisions by the corresponding frequency input from the ten keys.

When the zone marker width is set to 1 point (Spot), the zone marker becomes a vertical line. This is called a spot marker. Since the marker center frequency and the current marker frequency coincide, the level at the desired frequency can be measured.

Example of Spot Marker (Zone Width: 1 Point)

If the zone marker is set to 10 divisions when the zone center frequency is at the center of the frequency axis on the screen, the current marker will always move to the maximum peak level over the entire range of the observation frequency.

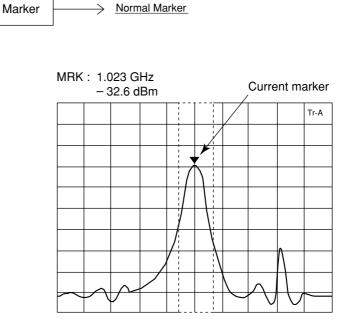


Example of Zone Width: 10 Divisions

Since the zone width in the time domain mode always becomes 1 (Spot), it cannot be changed.

(2) Changing Zone Marker Position

The center frequency (time) of the zone marker is initially centered on the frequency (time) axis on the screen. By performing the following key operations, the zone marker can be moved from the left end to the right end of the frequency axis (time) on the screen.

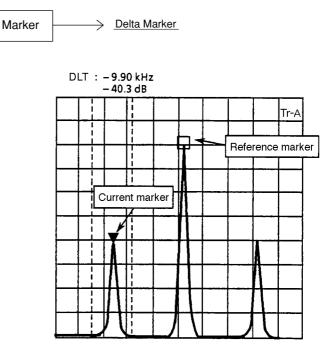


In the delta marker mode, setting the zone marker center frequency (time) with the ten keys results in entry of the delta marker value (difference between reference marker and current marker).

3.5.2 Normal Marker

A single marker is indicated by $\mathbf{\nabla}$ at the maximum level within the zone marker. The frequency and level at that point are displayed digitally.

The normal marker is initially set to ON. When the current state is another marker mode, or when the normal marker is set to OFF, perform the following key operations to set the normal marker to ON.

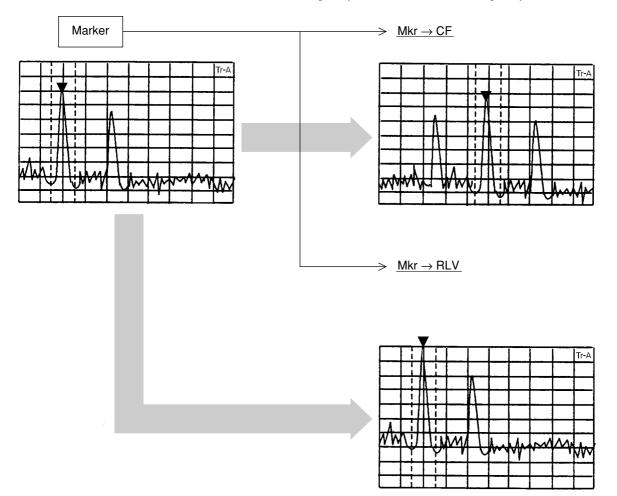

The normal marker displays the absolute level. By setting a display line, the normal marker can also display the level relative to a given level specified as a reference line.

3.5.3 Delta Marker

The current marker position when the delta marker is set to On is fixed as the reference marker (reference point). Then, as the current marker is moved, the reference marker and current marker frequency (time) and level differences are displayed digitally as delta marker values.

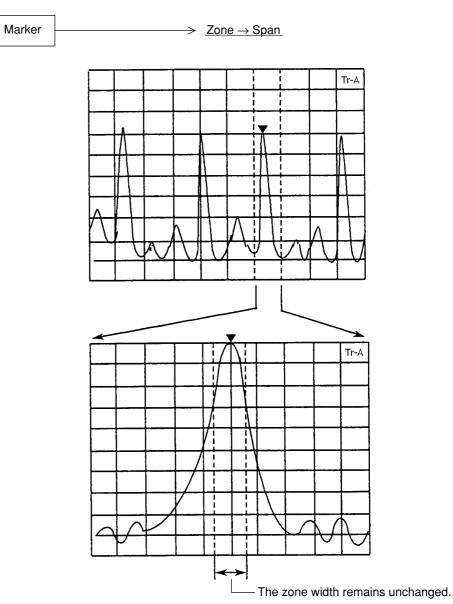
In the delta marker mode, the reference marker is indicated by \square .

To set the delta marker to On, perform the following key operations.



Press the <u>Delta Marker</u> key in the delta maker mode. The reference marker moves to the current marker position and switches to the delta marker mode with that point as the reference point.

Varying the spectrum waveform in the delta marker mode does not change the marker frequency level. The reference marker is not necessarily always on the waveform because it remains unchanged. Also, when the reference marker cannot be positioned on the screen by changing the observation frequency and level and range, it is at the edge of the scale lines.


3.5.4 Mkr \rightarrow CF/Mkr \rightarrow RLV

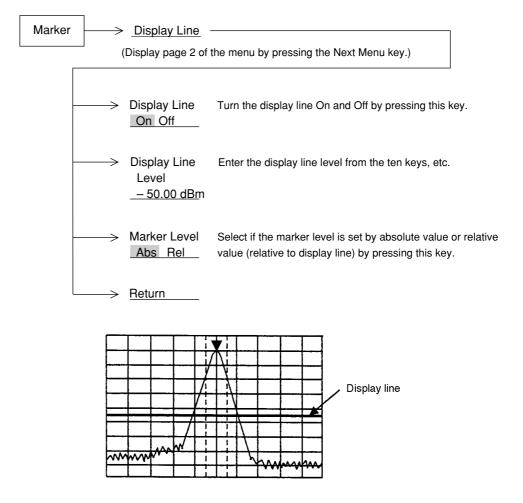
Sets the current marker frequency or level to the center frequency or reference level.

$\textbf{3.5.5} \qquad \textbf{Zone} \rightarrow \textbf{Span}$

To set the zone marker center frequency and width to the center frequency and frequency span, respectively, perform the following key operations.

3.5.6 Marker Off

(Display page 2 of the menu by pressing the Next Menu key.)

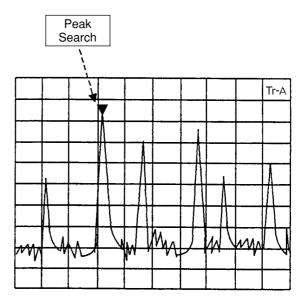

The marker disappears from the screen. When the Normal Marker key is pressed, the marker is displayed.

3.5.7 Display Line

In the state in which a horizontal line which indicates a given level is displayed on the scale, the display line can be used as the frequency response measurement guideline, or as the reference line of the marker level measurement or pass/fail judgement with a standard line.

(1) Setting Display Line

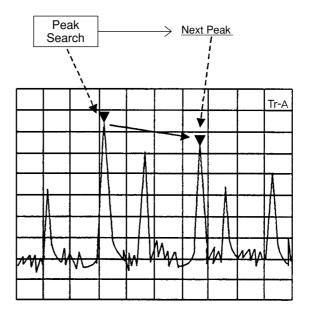
To turn the display-line On and Off and to set the display-line level, perform the following key operations.


Display-line On and Off are common to all traces (A, B, Time). The display-line level and Abs/Rel can be selected independently for each trace.

3.6 Marker Search Function

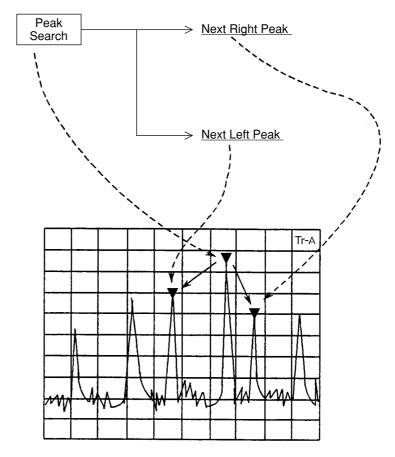
3.6.1 Peak Search

Peak Search detects the maximum level point from the entire trace in which a marker is displayed and moves the marker to that point.


To Execute Peak search, perform the following key operations.

3.6.2 Next Peak Search

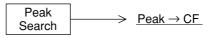
Next Peak Search detects the next largest peak relative to the current marker level and moves the marker to that point. (When there are two or more peaks with the same level on the screen, the left most peak is detected.)


Execute Next Peak search by performing the following key operations.

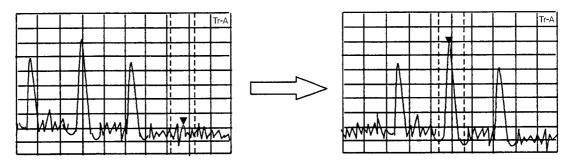
The next largest peaks can be detected and the marker can be moved to those peaks by executing Next Peak Search consecutively.

3.6.3 Next Right Peak Search/Next Left Peak Search

Next Right Peak search and Next Left Peak Search detect the adjacent peak level to the right or left of the current marker and move the marker to that point. To execute Next Right Peak Search and Next Left Peak Search, perform the following key operations.

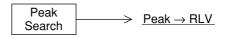

The adjacent peak level to the right or left can be detected and the marker moved to that peak by executing Next Right Peak Search or Next Left Peak Search consecutively.

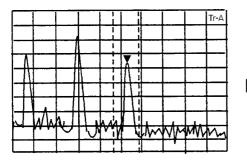
Note:

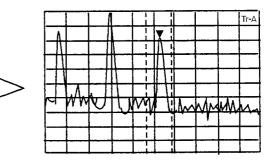

When marker search is executed, the marker is moved to the specified Peak or Dip point, and the zone marker center frequency is simultaneously moved to the marker point. After that, when sweep is executed within the zone marker, the marker moves to the maximum point within the zone marker. Therefore, marker search other than Peak search should be executed with sweep stopped or with the zone width set to 1 point (spot marker mode).

$\textbf{3.6.4} \qquad \textbf{Peak} \rightarrow \textbf{CF}/\textbf{Peak} \rightarrow \textbf{RLV}$

(1) Peak \rightarrow CF

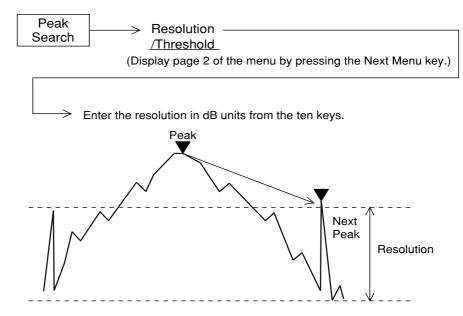

Sets the maximum peak point on screen and the zone marker to the center frequency.


Notes:


- When the frequency at the maximum peak point is less than 0 Hz, the center frequency is set to 0 Hz.
- If there are two or more maximum peak points with the same level on the screen, the peak point with the lowest frequency is moved to the center frequency.
- Peak \rightarrow CF does not operate in the Time Domain.

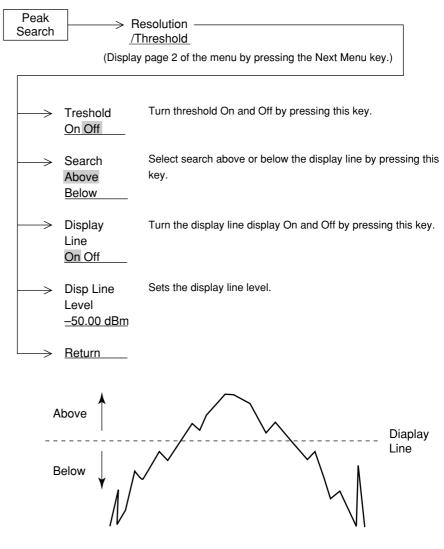
(2) $\text{Peak} \rightarrow \text{RLV}$

Sets the maximum peak level on screen to the reference level.



Notes:

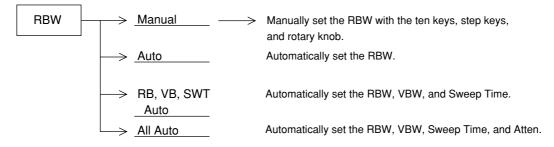
- If the level at the peak point exceeds the permitted range for the reference level, the reference level is set to the maximum (minimum) reference level that can be set.
- If the level at the peak point exceeds the reference level (scale over), one operation of the Peak → RLV may not be able to set the correct reference level. In this case, repeat the Peak → RLV operations a few times.

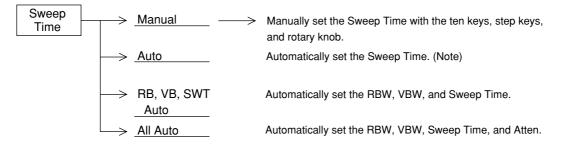

3.6.5 Setting Search Resolution

Sets the Peak search resolution. When searching for the next peak, the marker moves to the point of the set resolution or higher.

3.6.6 Setting Search Threshold

Sets the display line to the threshold and searches for the level above or below the display line.


Note:


This function will be effective with the Display Line On.

3.7 Coupled Function

3.7.1 Resolution Bandwidth (RBW) and Sweep Time

To set the RBW and Sweep Time, perform the following key operations.

(1) Auto mode

The RBW. Sweep Time, and VBW parameters are set to Auto so that even if the frequency span is varied, the respective parameters are automatically set to the optimum values so that frequency and level measurement errors do not occur. The following shows the Swp Time Auto setting range:

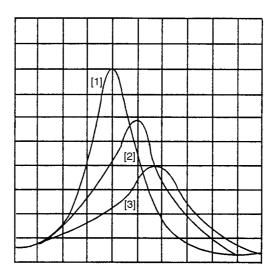
- Lower limit value
- 100 msec
- Upper limit value 1000 sec

(2) Manual setting

If RBW, VBW, and Sweep Time are set to the Auto mode, normal measurements can be made without considering their settings.

However, in the following cases, RBW should be set to the Manual mode.

[1] General measurements:

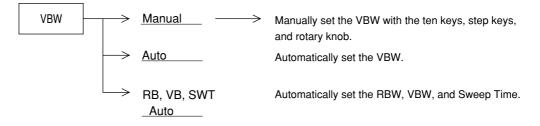

When observing two adjacent signals, increasing the frequency by narrowing the RBW can reduce the noise level (a tenth part of the current RBW results in a 10 dB reduction).

However, if the RBW is too narrow, the spectrum waveforms will become too steep, the response characteristics become worse, and the sweep time will also become longer. Therefore, the RBW value should be determined to give a practical sweep speed.

[2] Intermodulation distortion measurement:

When measuring two signal intermodulation distortion with a comparatively wide frequency span and a reduced noise level, the RBW value should be narrowed by manual setting. However, the sweep time increases in inverse proportion to the square of the RBW.

The RBW can be selected from among the following by Manual setting: 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz


Optimum trace waveform
 [2], [3] UNCAL trace waveforms

Note:

The spectrum traces on the screen are displayed as shown at the left according to the sweep time. The optimum sweep time gives a waveform like [1]. However, a sweep time that is too fast decreases the waveform amplitude on the display as shown in [2] and [3]. Therefore, the apparent bandwidth gets wider, and the frequency also shifts. When waveform [1] cannot be maintained, "UN-CAL" is displayed.

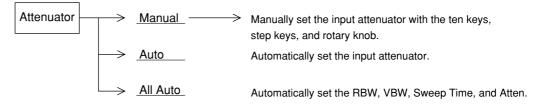
3.7.2 Video Bandwidth (VBW)

To set the VBW, perform the following key operations.

(1) Auto mode

The spectrum analyzer different with conventional spectrum analyzer, does not require any analog circuit such as a log amplifier after the RBW filter. As t he result, therefore, there is no noise source after the RBW filter, shich allows the VBW filter OFF (through) when setting "Automatic" operation.

(2) Manual setting


When wanting to average the noise by making the VBW narrow without regard to the RBW set value, or when wanting to make the VBW wide to observe the waveform of signals modulated at a high frequency, use Manual setting. The VBW value can be manually set from among the following values: 3 Hz, 10 Hz, 30 Hz, 100 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, OFF

Notes:

- When VBW ≥ RBW is set, noise is not averaged and the sweep speed in increased.
- Noise can also be averaged without narrowing the VBW (without decreasing the sweep time) by performing video averaging. For further details, see par. 3.8.5.

3.7.3 Input Attenuator (Attenuator)

To set the input attenuator, perform the following key operations.

(1) Auto mode

When the reference level is set while Auto is selected, the input attenuator is automatically set to the optimum value according to the reference level.

(2) Manual setting

When a signal with the same level as the reference level is input, the input attenuator value in the Auto mode is controlled so that high accuracy measurements can be made without being influenced by gain compression and the noise level can be reduced. However, when you want to measure a low level signal by raising the sensitivity when measuring nonharmonic spurious response and the spurious response of adjacent signals, measurement may be impossible because the Attenuator values in the Auto mode are too large. In this case, set the input attenuator manually according to the table below.

Reference Level and Input	Attenuator	(Manual)
----------------------------------	------------	----------

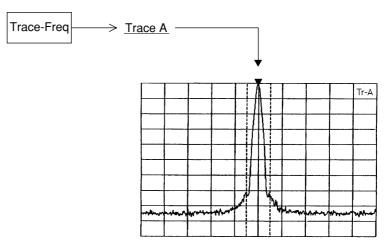
Referrence Level	Attenuator Manual	Reference Level	Attenuator Manual
effective range	Mainconnector	effective range	AUX connector
(dBm)	(dB)	(dBm)	(dB)
+50 to -60	90	+30 to -80	70
+50 to -60	80	+30 to -80	60
+50 to -60	70	+30 to -80	50
+50 to -60	60	+30 to -80	40
+40 to -60	50	+20 to -80	30
+30 to -60	40	+10 to -80	20
+20 to -60	30	0 to -80	10
+10 to -60	20	+10 to -80	0

3.7.4 Automatic Calibration

Execute spectrum analyzer automatic calibration by performing the following key operations.

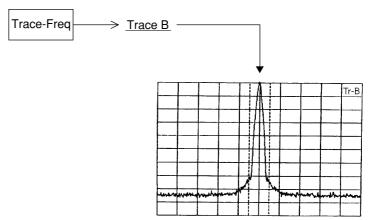
It is recommendable to execute the process of automatic calibration, when more accurate measurements is needed, or it would not correspond to the standard, or environments such as ambient temperature have greatly changed.

WARNING A


Execution of calibration with external signal to the RF input will not porvide correct calibration values. Make sure that no signal should be given to the RF input when calibration is made.

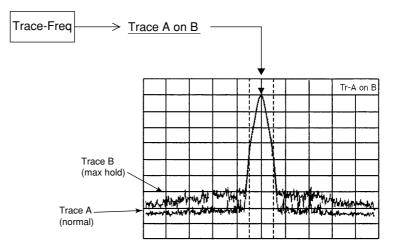
3.8 Selecting the Display Mode

3.8.1 Trace Freq

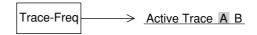

(1) Trace A

Trace A is used to analyze signals in the normal frequency domain.

(2) Trace B


Like trace A, trace B is used to analyze signals in the normal frequency domain. When used with trace A, it is possible to compare waveform A and waveform B.

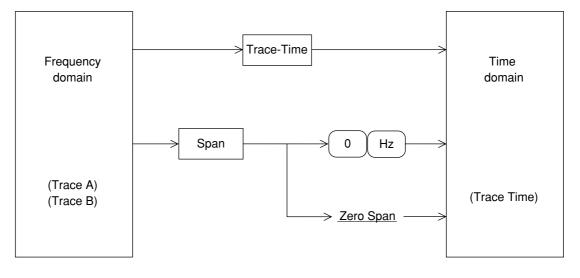
Parameters of the trace A and trace B can be set independently.


(3) Trace A and Trace B Overwrite Display

Overwrites trace A and trace B on one screen. At this time, the trace B frequency range, reference level, and other parameters are the same as trace A. However, in the threshold mode and detection mode, the parameters can be set independently at trace A and trace B. For instance, comparison measurement with a standard waveform and simultaneous observation of the same waveform in a mode different from the normal mode and max hold (or averaging, etc.) mode are possible.

(4) Setting Active Trace

When trace A and trace B were overwritten on the same screen, select the marker trace by pressing this key.



3.8.2 Time Domain

Since the spectrum analyzer stops sweeping the frequency when set to a frequency span of 0 Hz, the spectrum analyzer becomes a selective level meter that continues to receive only the center frequency. In this case, the horizontal axis of the time-axis sweep waveform is graduated in time and displayed on the spectrum analyzer screen. This display method is called "time domain display".

(1) Setting Time Domain

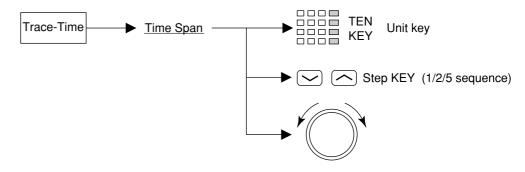
The time domain can normally be set by pressing the Trace-Time key in the Display section. It can also be set by setting the frequency span to 0 Hz in the frequency domain mode.

(2) Trace Time

Trace Time displays the time axis waveform at the center frequency of trace A or trace B. To display trace Time, press the Trace-Time key.

																Tr -	time	;
		$\left[\right]$																
	 																	4
																		-
	W		W	h		W	m			m	M			M	M		W	4
Trace-Time		\rightarrow	De	elay T 10.0 i							-	time ue is				er to	swe	ep.
		\rightarrow	Ti	me Sp 200 u			ę	Sets	the	e tim	ie s	pan	(tin	ne c	doma	ain s	wee	p time).
	\rightarrow			Trigger Freerun Triggered			Select freerun or trigger sweep by pressing this key.											
	\rightarrow			Trigger Source			Selects the trigger signal source.											
	\rightarrow Strage			rage		_	ę	Selects the storage display mode.										
	L	\rightarrow	De	etectio	n	_	9	Sele	ects	the	det	ecti	on r	nod	le.			

The following parameters can be set independently in the frequency domain or time domain mode.

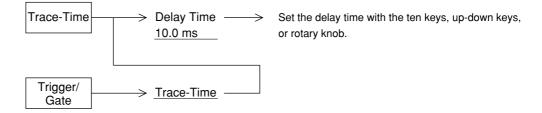

- Vertical scale range (10 dB/div, etc.)
- Storage mode (Normal, Max Hold, Average, etc.)
- Detection mode (Pos Peak, Sample, Neg Peak)
- Resolution bandwidth (RBW)
- Video bandwidth (VBW)
- Sweep time (Sweep Time/Time Span)
- Trigger switch (Freerun/Triggered)

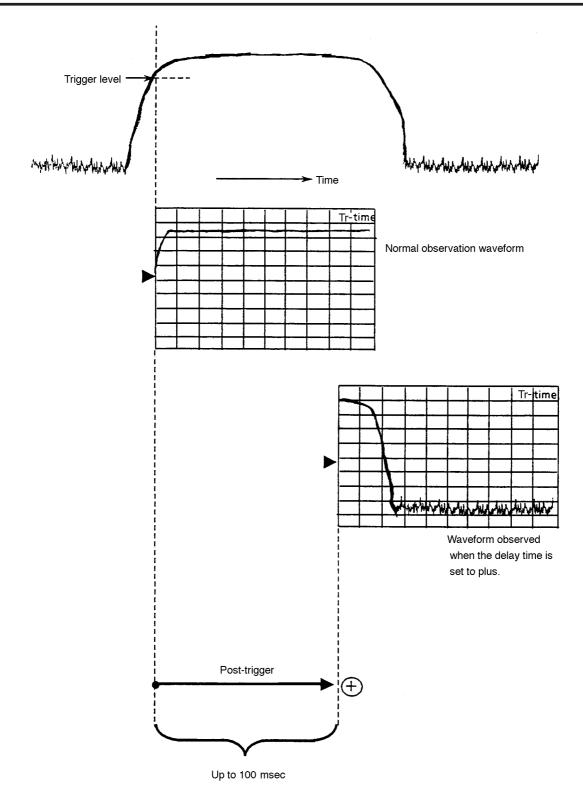
Note:

The time domain mode marker function uses a spot marker. A zone marker cannot be used.

(3) Setting Time Span

In the time domain mode, the measurement range on the horizontal axis does not set the frequency span, but sets the time span. To set the time span, perform the following key operations.




(4) Delay Time

When the trigger mode is set to Triggered in the time domain mode, the trigger point is usually positioned at the left end of the screen. This, however, means that it is not possible to see the waveform before the trigger point and the waveform beyond the right end of the screen.

With the spectrum analyzer, a waveform away from the trigger point can be displayed by changing the delay time.

To set the delay time, perform the following key operations.

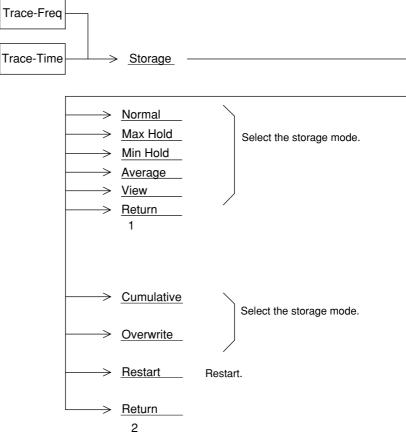
Example of Waveform With Delay Time

3.8.3 Storage Mode

The following seven storage modes can be selected for Display modes trace A, trace B, and trace Time.

NO.	Mode	Explanation	Display example
1	Normal	Refreshes and displays the trace data at each sweep. This is used for normal measurement.	
2	Max Hold	At each sweep, compares the new trace data with the old data at each X axis point, then displays the larger value data. It is used to record a frequency-drifting signal.	
3	Mim Hold	At each sweep, compares the new trace data with the old data at each X axis point, then displays the smaller value data.	
4	Average	At each sweep, calculates the average data at each X axis point, then displays the averaged results. This mode is used to improve the S/N ratio. For further details on the averaging function, see para. 3.8.5.	

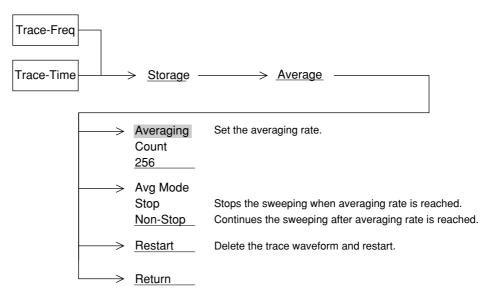
Types of Trace Modes (1/2)


Section 3 Operation

NO.	Mode	Explanation	Display example
5	Cumulative	Displays the cumulative waveform at each sweep. The waveform data, which are not connected by lines, are displayed by plotting the data.	
6	Over write	Displays the waveform overwritten without deleting the old trace data.	
7	View	Continues displaying the waveform as it is, without refreshing the currently-displayed trace data. This mode is used to observe waveforms with the trace data stopped temporarily.	

Types of Trace Modes (2/2)

3.8.4 Setting Storage Mode


The storage mode can be selected by operating the function keys shown below while the spectrum analyzer is operating in the trace A, trace B, or trace Time mode.

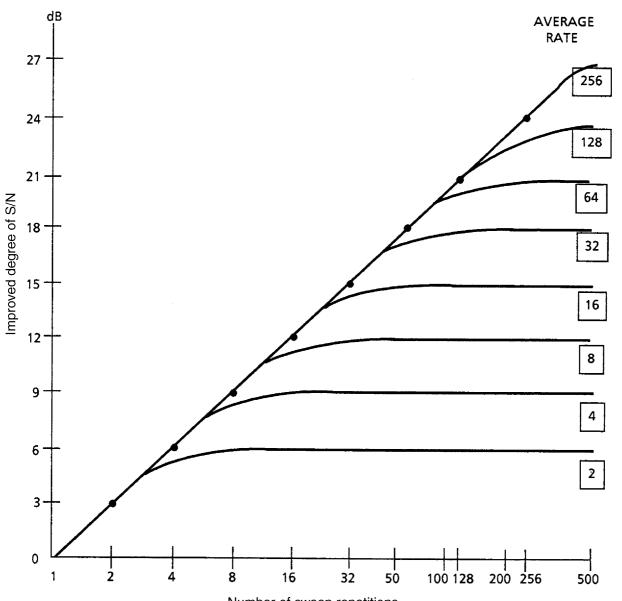
(Display page 2 of the menu by pressing the Next Menu key.)

3.8.5 Averaging Function

The digital averaging function calculates the average data at each X axis point at each sweep and displays the results. It is executed by selecting Average in the trace A, trace B, and trace Time display modes.

The averaging function improves the S/N ratio depending on the averaging rate and the number of sweep repetitions as shown on the next page.

Digital video averaging is performed by the method shown below.


	Number of sweep repetitions	Measurement value	Displayed value					
[¹] Restart	1	M (1)	Y(1) = M(1)					
	2	M (2)	$Y(2) = Y(1) + \frac{M(2) - Y(1)}{2}$					
	3	M (3)	$Y(3) = Y(2) + \frac{M(3) - Y(2)}{3}$					
	N-1	M (N–1)	$Y(N-1) = Y(N-2) + \frac{M(N-1)-Y(N-2)}{N-1}$					
[2] Stop	N	M (N)	$Y(N) = Y(N-1) + \frac{M(N)-Y(N-1)}{N}$					
[3] Continue 🔻	N + 1	M (N + 1)	$Y(N+1) = Y(N) + \frac{M(N+1) - Y(N)}{N}$					
	N + 2	M (N + 2)	$Y(N+2) = Y(N+1) + \frac{M(N+2) - Y(N+1)}{N}$					

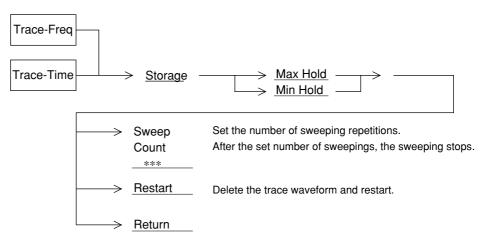
Averaging Rate = N

At a time of Continuous Sweep:

- [1] Sweep stops after N repetitions. (When Avg Mode is Stop)
- [2] The above stop condition is released by restarting sweep by Continue. The averaging operation resumes, while counting the number of sweep repetitions as N+1, N+2....
- [3] When Restart is performed during sweep or Stop, averaging is repeated from sweep count 1.
- [4] When the "Signal Sweep" is zctivated, the sweep wil be limited one time.
- [5] When the "Signal Sweep" is activated duraing "Sweep" or "Stop" modes, an additional sweep wil be made.

Number of sweep repetitions

S/N Improvement by Digital Video Averaging

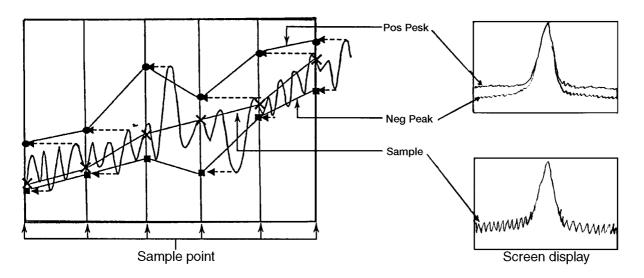

Averaging by video filter has the disadvantage that the sweep time becomes longer when the video bandwidth is narrowed to improve the averaging effect.

On the other hand, digital video averaging smoothes the trace display by averaging the digital data after A/D conversion at each sweep, without narrowing the video bandwidth (VBW). Since the video bandwidth (VBW) gets comparatively wider and the time required for each sweep can be shortened, the entire spectrum image can be verified quickly and the repetitive sweep can be stopped when the required smoothing has been obtained. The problem of averaging with the video filter is that the time required for each sweep becomes longer and it takes a long time to verify the entire spectrum image.

Since the averaging rate is initially eight, the above figure shows than an S/N improvement of 9 dB is obtained with eight sweeps.

3.8.6 Max Hold and Min Hold Functions

When Max Hold or Min Hold is selected, the sweeping can be performed by the number of specified repetitions, and then stops.

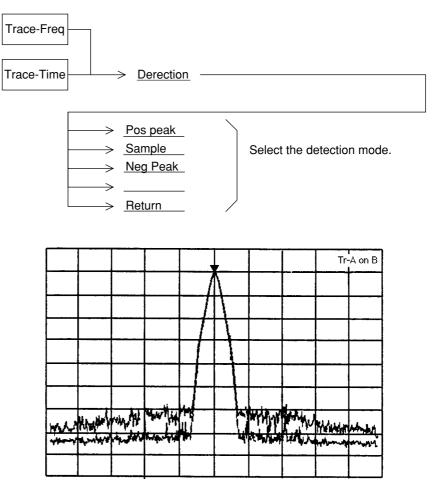


3.8.7 Explanation of Detection Mode

The spectrum analyzer has 501 horizontal-axis measurement sample points. This corresponds to 501 storage trace memories.

The detection mode determines what type of measured value should be stored in the trace memory at each measurement sample point.

Detection mode	Description
Pos Peak	Holds the maximum level present between the current sample point and the next sample point, then stores the maximum value in the trace memory corresponding to the current sample point. Pos Peak is used to measure the peak value of signals near the noise level.
Sample	Stores the instantaneous signal level at each sample point to the trace memory. Sample is used for noise level measurement, time domain measurement, and other measurements.
Neg Peak	Holds the minimum level present between the current sample point and the next sample point, then stores the minimum value to the trace memory corresponding to the current sample point. The Neg Peak mode is used to measure the lower envelope side of a modulated waveform.



When the detection mode is set to Sample or Neg Peak while the frequency span and resolution bandwidth are set so that the spectrum is displayed as discrete vertical lines, the spectrum peak is incorrectly displayed.

3.8.8 Selecting Detection Mode

Select the detection mode for trace A, trace B, or trace Time by performing the following key operations.

Waveforms when trace A is in the Pos Peak mode and trace B is in the NegPeak mode

3.9 Selecting the Sweep Method

3.9.1 Continuous Sweep Mode

When the trigger mode is set to Freerun, sweep is performed continuously. When the trigger mode is set to Triggered, sweep is executed each time the trigger conditions are met.

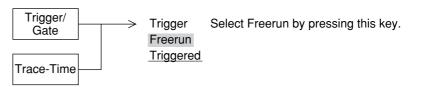
To set the continuous sweep mode, perform the following key operation. (The continuous sweep mode is initially set.)

3.9.2 Single Sweep Mode

When the trigger mode is set to Freerun, sweep is executed once immediately after the (single) key is pressed.

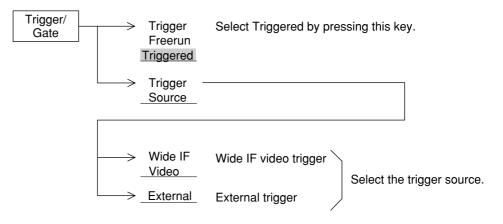
When the trigger mode is set to Triggered, sweep is executed only once when the trigger conditions are met after the (single) key is pressed.

To set (sweep start) the single sweep mode, operate the following key.


3.9.3 Trigger Mode

The spectrum analyzer trigger mode can be divided into Freerun and Triggered. In the Triggered mode, Wide IF Video and External can be selected as the trigger source.

(1) Freerun

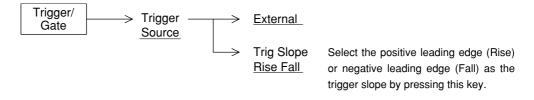

When the sweep mode is set to continuous, sweep is repeated continuously. When the sweep mode is set to single sweep, sweep is started immediately after the (Single) key is pressed.

To set the Freerun mode, perform the following key operations. (The Freerun mode is initially set.)

(2) Triggered

When the conditions of the pre-selected trigger source are met, sweep is started. To set the Triggered mode and to select the trigger source, perform the following key operations.

(3) Wide IF Video Trigger

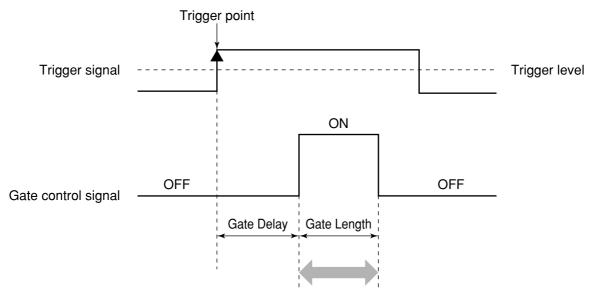

A wide bandwidth IF signal of at least 30 MHz is detected and sweep is started in synchronization with its positive leading edge or negative leading edge. To select the trigger level and trigger slope, perform the following key operations.

Generally, there is no burst synchronizing signal and this signal is used as a burst wave gate control signal.

(4) External Trigger

Sweep is started in synchronization with the positive leading edge or negative leading edge of the TTL signal input to the Ext Input connector on the rear panel.

3.9.4 Explanation of Time Gate Function

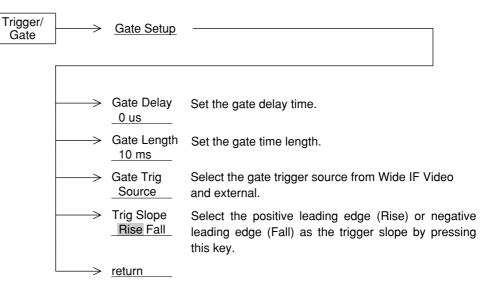

The time gate function is a sweep mode which turns the waveform data display On and Off by the gate control signal generated in the spectrum analyzer based on an external signal or video trigger signal.

Since the timing that displays the spectrum waveform can be set by using this mode, the spectrum when the burst signal is On can be analyzed.

In order to use the time gate function, an external trigger signal synchronized with burst wave On/Off or other signal change is required to create the gate control signal. When an external synchronizing signal is unavailable, set the trigger source to wide IF video trigger. A synchronizing signal can be obtained internally.

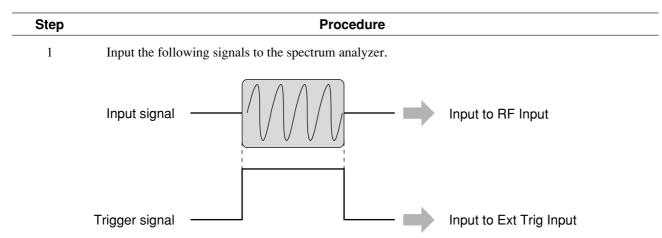
3.9.5 Creating a Gate Control Signal

If the point where an external trigger signal or a wide IF video trigger signal is triggered is assumed to be the reference position, the gate control signal remains On over the period from the point immediately after the Gate Delay time has elapsed from the reference position to the time set by Gate Length.

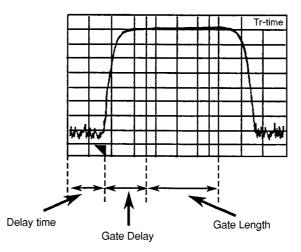


Only this time is displayed

To turn the gate time analysis function On and Off and to create the gate control signal, perform the following key operations.


Trigger/ Gate		
	Gate Sweep On Off	Turn the gate function On and Off by pressing this key
	→ <u>Gate Setup</u>	Set the gate function.
	→ <u>Trace Time</u>	Set the time domain mode.
	> <u>Trace A</u>	Set the trace A (frequency domain) mode.

3.9.6 Setting Gate Function



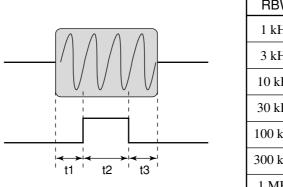
Section 3 Operation

The time domain mode facilitates setting the gate control signal time. The following shows an example of how to use the Time Gate function that uses the time domain mode.

2 Display the waveform in the time domain mode. Synchronize the input signal by setting the trigger mode to Triggered and the trigger source to Ext Input 1 (-10 to 10 V).

3 Set Gate to On. Vertical lines (gate cursor) should appear at the Gate Delay and Gate Length positions.

Set GateDelay and Gate Length to appropriate positions while observing the waveform. At this time, adjust the resolution bandwidth and video bandwidth in the time domain mode to equal those in the frequency domain mode, then set the gate cursor positions. The influence of spike-like noises independent of the conditions shown in Note 1 described later can be avoided.


Note:

Delay Time is set to OnS.

Step	Procedure			
4	4 Set the frequency domain mode. The trigger mode becomes Freerun and the waveform dat displayed only for the time set by Gate Length.			
	Tr-A			

Notes:

The detector output is delayed compared to the positive leading edge of [1] the input waveform when the resolution bandwidth (RBW) is narrowed in the frequency domain measurement mode. As a result, spike-like noises may appear on the trace. To prevent this from appearing, set Gate Delay and Gate Length to values that satisfy the following conditions.

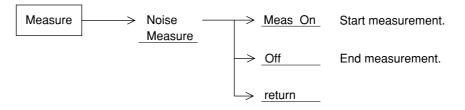
RBW	t1	t2	t3
1 kHz	1 kHz \geq 3 ms		
3 kHz	$\geq 1 \text{ ms}$		
10 kHz	≥ 230 µs		
30 kHz	≥ 200 µs	≥ 20 µs	$\geq 1 \ \mu s$
100 kHz	≥ 20 µs		
300 kHz	≥ 15 µs		
1 MHz	≥ 10 µs		

[2] When the resolution bandwidth (RBW) is extremely narrow for the frequency span, some waveforms cannot be displayed correctly. Set each parameter so that the following conditions are satisfied.

$$RBW \geq \frac{Span}{Number of data points (501)} \times 5$$

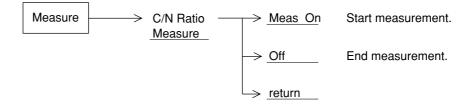
Trigger can be applied by the gate control signal created internally by setting the trigger source to Wide IF Video.

3.10 Measurement

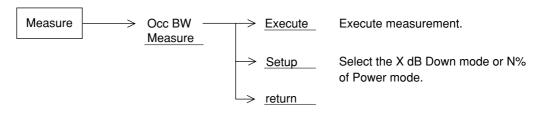

3.10.1 Measurement Function

Various application measurements can be selected by performing the following key operations.

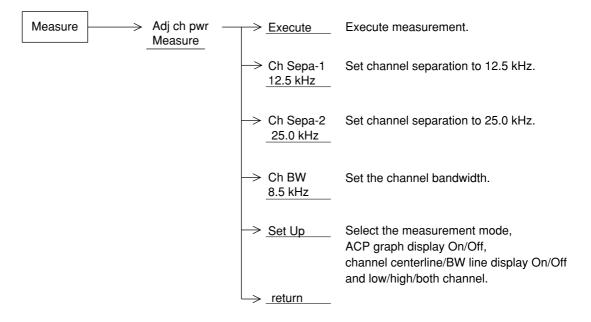
Measure	~~>	Noise Measure	Measure the carrier signal and noise power ratio.
	\rightarrow	C/N Ratio Measure	Measure the occupied bandwidth. Select the X dB DOWN mode or N% of POWER mode.
	\rightarrow	Occ BW Measure	Measure the adjacent channel leakage power.
	\rightarrow	AdJ ch pwr Measure	Select the channel separation, channel bandwidth, measurement mode, ACP graph display On/Off, channel center line On/Off, channel BW line On/Off, and measurement low band/high band/both bands channel, etc.
	\rightarrow	Burst <u>AvgPower</u>	Measure the average power of a burst signal in the time domain.
		Off	Select the start/end points.


(1) Measuring Noise Power

To measure the total noise power of the zone marker range, perform the following key operations.


(2) Measuring C/N Ratio

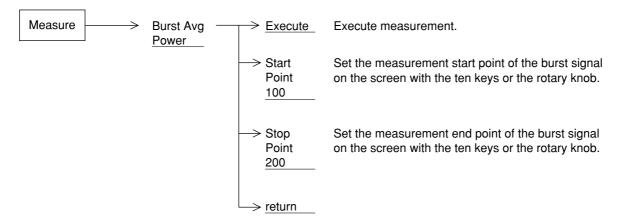
To measure the C/N ratio, perform the following key operations.


(3) Measuring Occupied Bandwidth

To measure the occupied bandwidth, perform the following key operations.

(4) Measuring Adjacent Channel Leakage Power

To measure the adjacent channel leakage power, perform the following key operations.

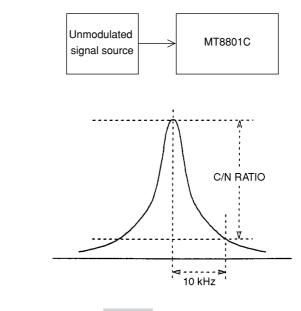

Note:

Since the graph display etc. displayed in the Set Up mode use the Trace B, the waveform data saved in the Trace B is erased. When erasing the graph etc., refresh the Trace B.

Section 3 Operation

(5) Measuring Burst Average Power

To measure the average power of a burst wave in the time domain mode, perform the following key operations.

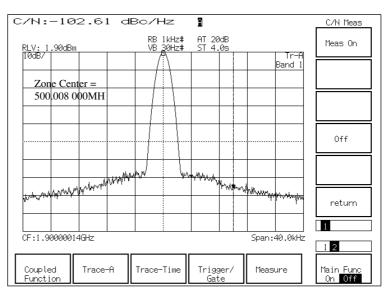

3.10.2 Measurement Examples

The following describes the measurement block diagram and measurement operating procedure of actual measurement examples.

In the measurement examples, [] indicates a panel key, F*: _____ indicates a Main Function key and F*: _____ indicates a Main Function key.

(1) Example of C/N Ratio Measurement

- <u>In C/N measurement, set the detection mode set to the Sample mode, unless</u> <u>specified otherwise.</u>
- (1) Measurement block diagram



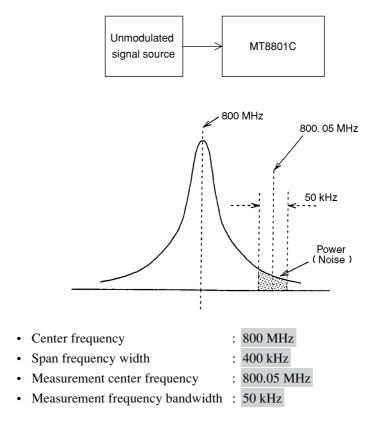
- Center frequency : 1.9 GHz
- Offset frequency : 100 kHz

Section 3 Operation

Step	Operation procedure	
1	Press the spectrum analyzer [Preset] key.	
2	Span frequency setting: F2: Span, [4], [0], [kHz]	
	Sets the span frequency to 3 or 4 times the offset frequency.	
3	Reference level setting: F3: Amplitude , [2], [0], [dBm]	
4	Center frequency setting: F1: Frequency, [1], [.], [9], [GHz]	
5	RBW setting: [Next Menu], F1: Coupled Function , F7: RBW, [1], [kHz]	
6	VBW setting: F12: return, F8: VBW, [3], [0], [Hz]	
7	Marker setting: [Next Menu], F4: Marker, F12: Zone Width, F7: Spot	
8	Peak setting: After one sweep, F5: Peak Search, F11: Peak \rightarrow CF, F12: Peak \rightarrow RLV	
9	Marker position setting: F4: Marker, F8: Delta Marker, [1], [0], [kHz]	
	(Becomes the offset frequency.)	
10	C/N measurement: [Next Menu], F5: Measure], F8: C/N Ratio Measure: F7: Meas On	
	The measured result is displayed at the top left-hand corner of the screen each time the sweep i	
	updated.	

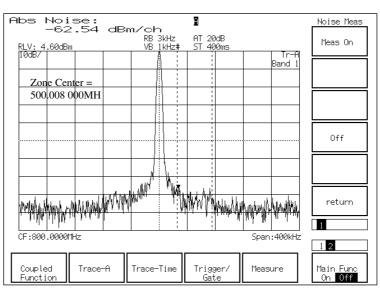
- ★ Example of measured result: -102.61 dBc/Hz
- ★ Select the best C/N measured value by changing the RBW value. Also, make the ATT value minimum.

C/N ratio measurement example


Note:

In this measurement, the measured value does not become 0 dBm even when the marker frequency is moved to the reference level (carrier signal peak). This is because a correction value is also added as noise relative to the reference marker carrier.

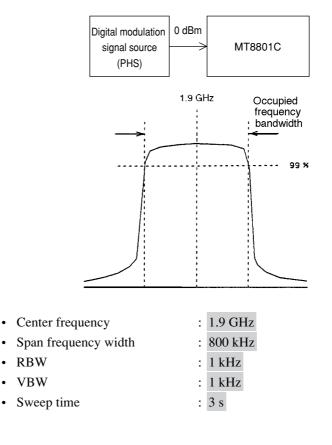
- (2) Example of Power (Noise) Measurement (Frequency Domain, Continuous Wave)
 - When making power measurements, set the detection mode to the Sample mode, unless specified otherwise.
 When measuring the carrier-off leakage power and adjacent channel leakage


power of Japan digital cordless telephone systems (burst wave), set the detection mode to the Pos Peak mode.

(1) Measurement block diagram

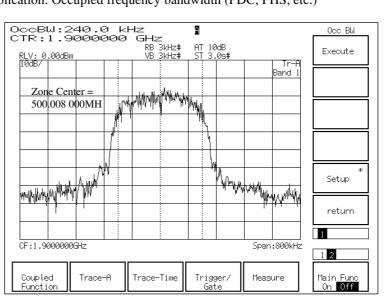
(2) Measurement procedure		
Step	Procedure	
1	Press the spectrum analyzer [Preset] key.	
2	Span frequency setting: F2: Span, [4], [0], [0], [kHz]	
3	Reference level setting: F3: Amplitude , [2], [0], [dBm]	
4	Center frequency setting: F1: Frequency, [8], [0], [0], [MHz]	
5	RBW setting: [Next Menu], F1: Coupled Function , F7: RBW, [3], [kHz]	
6	VBW setting: F12: <u>return</u> , F8: <u>VBW</u> , [1], [kHz]	
7	Peak setting: After one sweep, [Next Menu], F5: Peak Search , F11: Peak Æ CF, F12: Peak Æ RLV	
8	Zone center position setting: F4: Marker, F12: Zone Width, F7: Spot, F12: return, F7: Normal	
	<u>Marker</u> , [8], [0], [0], [.], [5], [MHz]	
9	Zone marker width setting: F12: Zone Width, [5], [0], [kHz]	
10	Power (noise) measurement: [Next Menu], F5: Measure], F8: Noise Measurement, F7: Meas On	
	The total power value of the zone marker range (measured value) is displayed at the top left-hand	
	corner of the screen each time the sweep is updated.	

- ★ Example of measured result: -62.54 dBm/ch
- \star Applications:
 - * Carrier-off leakage power measurement
 - * Adjacent channel leakage power measurement


Power (noise) measurement example

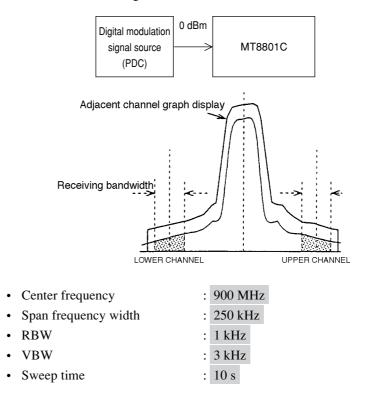
(3) Example for Occupied Frequency Bandwidth (Burst Wave)

- For burst waves, set the detection mode to the Pos Peak mode.
- (1) Measurement block diagram

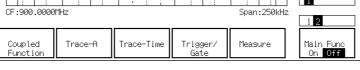

•

•

	(2) Measurement procedure		
Step	Operation procedure		
1	Press the spectrum analyzer [Preset] key.		
2	Span frequency setting: F2: Span, [8], [0], [0], [kHz]		
3	Reference level setting: F3: Amplitude, [0], [dBm]		
4	Center frequency setting: F1: Frequency, [1], [.], [9], [GHz]		
5	RBW setting: [Next Menu], F1: Coupled Function , F7: RBW, [1], [kHz]		
6	VBW setting: F12: return, F8: VBW, [1], [kHz]		
7	Sweep time setting: F12: return, F9: Sweep Time, [3], [s]		
8	Single sweep: [Single]		
9	Measurement preparations: Select F5: Measure, F9: Occ BW Measure, F11, Setup, F7: Method, and		
	N% of PWR.		
	F8: <u>N%Ratio</u> , [9], [9], [Enter]		
10	Power (noise) measurement: F12: return, F7: Execute		
	The measured value is displayed at the top left-hand corner of the screen.		


- ★ Example of measured result: Occ BW: 240 kHz, CTR; 1.9000000 GHz
- ★ Application: Occupied frequency bandwidth (PDC, PHS, etc.)

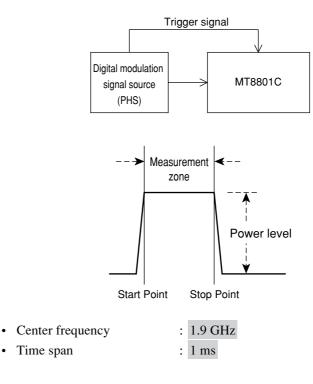
Occupied frequency bandwidth measurement example


(4) Example of Measurement of Adjacent Channel Leakage Power

(1) Measurement block diagram

	(2) Measurement procedure
Step	Procedure
1	Press the spectrum analyzer [Preset] key.
2	Span frequency setting: F2: Span, [2], [5], [0], [kHz]
3	Reference level setting: F3: Amplitude, [0], [dBm]
4	Center frequency setting: F1: Frequency, [9], [0], [0], [MHz]
5	RBW setting: [Next Menu], F1: Coupled Function, F7: RBW, [1], [kHz]
6	VBW setting: F12: return, F8: VBW, [3], [kHz]
7	Sweep time setting: F12: return, F9: Sweep Time, [1], [0], [s]
8	ATT setting: F12: return, F10: Attenuator, set to minimum value using a control.
9	Single sweep: [Single]
10	Measurement preparations: F5: Measure, F10: Adj Ch Pwr Measure
11	Adjacent channel setting: F8: Ch Sepa-1, [5], [0], [kHz]
	F9: <u>Ch Sepa-2</u> , [1], [0], [0], [kHz]
12	Receiving bandwidth setting: F10: Ch BW, [23], [1]. [kHz]
13	Graph display method: F11: Setup, F7: Method, select Total Pwr or Ref Level.
	(The graph display method is set to Total Pwr here.)
14	Graph display: When On is selected with F8: <u>ACP Graph</u> , a graph is displayed.
15	Channel display: When On is selected with F9: Ch Center Line, a line that shows the center frequency
	of the adjacent channel is displayed.
	When On is selected with F10: <u>Ch BW Line</u> , a line that shows the bandwidth of the adjacent channel is displayed.
16	Measurement channel setting: [Next Menu], F7: Both Channel
17	Power (noise) measurement: F12: return, F7: Execute
	The measured value is displayed at the top left-hand corner of the screen.

The measured value is displayed at the top left-hand corner of the screen. L1:-58.93 U1:-58.82 L2:-74.65 U2:-74.08 RLV:0.00dBm VB 3kHz# A Adj ch Pwr AT 10dB ST 10s# Execute RLV: 0.00dBm |10dB/ Tr-AonB Band 1 J Ch Sepa-1 50.00kHz Zone Center ≠ 500.008 000MH Ch Sepa-2 100.00kHz Ch BW 21.00kHz ١ MAL Setup Mar North WWK himm manung return 1

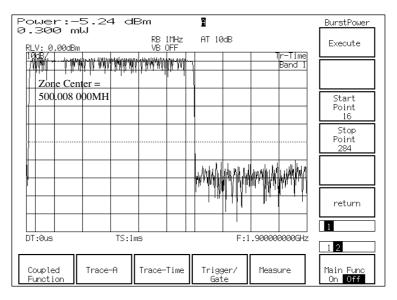


Adjacent channel leakage power measurement example

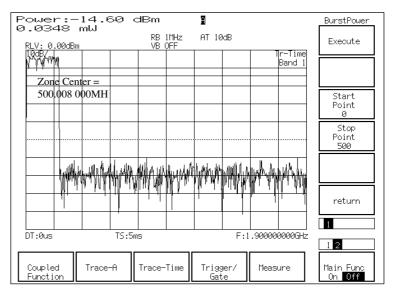
(5) Example of Power Measurement (Time Domain)

- Find the effective average value of the zone set by the two cursors on the screen.
- (1) Measurement block diagram

•



Section 3 Operation


	(2) Measurement procedure		
Step	Operation procedure		
1	Press the spectrum analyzer [Preset] key.		
2	Time domain setting: F2: Span, [0], [kHz]		
3	Reference level setting: F3: Amplitude, [2], [0], [dBm]		
4	Center frequency setting: F1: Frequency, [1], [.], [9], [GHz]		
5	RBW setting: [Next Menu], F1: Coupled Function, F7: RBW, [1], [MHz]		
6	Time span setting: F3: Trace-Time, F8: Time Span, [5], [ms]		
7	Reference level setting: After one sweep, [Next Menu], F5: Peak Search, F12: <u>Peal Æ RLV</u> F3: Amplitude, raise the reference level several dB using the control.		
8	Time span setting: [Next Menu], F3: Trace-Time, F8: Time Span, [1], [ms]		
9	Trigger setting:F4: Trigger/Gate, F7: Trigger, select TriggeredF8: Trigger Source, F9: ExternalSelect Rise with F10: Trig Slope.		
10	Single sweep: [Single]		
11	 Measurement preparations: F5: Measure, F11: <u>Burst Avr Power</u> F8: <u>Start Point</u>, set the start point in the measurement zone using the control. F9: <u>Stop Point</u>, set the stop point in the measurement zone using the control. 		
12	Power measurement: F7: <u>Execute</u> The measured value is displayed at the top left-hand corner of the screen.		

(2) Measurement procedure

- ★ Example of measured value: -5.24 dBm, 0.300 mW
- ★ To find the average power between burst frames, set the measurement zone to the burst frame time. (Example 2)
- ★ Applications:
 - * Spurious radiation strength measurement (PDC, PHS)
 - * Antenna power measurement (PDC, PHS)

Power measurement (time domain) example 1

Power measurement (time domain) example 2

Section 4 Peformance Tests

This section describes the test equipment, setup, and performance check procedure for testing the performance of the MT8801C Spectrum Analyzer function.

4.1	Requirement for Performance Tests							
4.2	Instrum	nents Required for Performance Test	4-3					
4.3	Perforr	nance Tests	4-4					
	4.3.1	Reference oscillator frequency stability	4-4					
	4.3.2	Center frequency display accuracy	4-4					
	4.3.3	Frequency span display accuracy	4-6					
	4.3.4	Resolution bandwidth and selectivity	4-8					
	4.3.5	Sideband noise level	4-11					
	4.3.6	Screen amplitude display linearity	4-13					
	4.3.7	Frequency response	4-15					
	4.3.8	Reference level accuracy	4-18					
	4.3.9	Average noise level	4-21					
	4.3.10	Residual response	4-23					
	4.3.11	Second harmonic distortion	4-25					
	4.3.12	Resolution bandwidth (RBW) switching						
		deviation	4-27					
	4.3.13	Performance test results entry form						
		examples	4-29					

4.1 Requirement for Performance Tests

Performance checks are carried out as part of preventive maintenance to prevent performance degradation in the MT8801C Spectrum Analyzer function.

Use performance checks to check the instrument performance during receiving inspection and routine inspection and after repair.

This section describes the following performance checks:

- Center frequency display accuracy
- Frequency span display accuracy
- Resolution bandwidth and selectivity
- Sideband noise level
- Screen amplitude display linearity
- Frequency response
- Reference level accuracy
- Average noise level
- · Residual response
- Second harmonic distortion
- Resolution bandwidth switching deviation

For preventive maintenance, periodically perform the performance check items that are important to your application.

The recommended routine inspection interval is once or twice a year.

If you find any item that does not satisfy the specifications, contact the Anritsu Service Department.

4.2 Instruments Required for Performance Test

The instruments required for performance tests are shown below.

Test item	Test equipment name	Recommended model	Reference
Center frequency display accuracy	Signal generator	MG3633A	4.3.2
Frequency span display accuracy	Signal generator	MG3633A	4.3.3
Resolution bandwidth and selectivity	Signal generator	MG3633A	4.3.4
Sideband noise level	Signal generator	MG3633A	4.3.5
Screen amplitude display linearity	Signal generator Calibration receiver	MG3633A ML2530A	4.3.6
Frequency response	Signal generator Power meter Power sensor	HP8665B ML4803A MA4601A	4.3.7
Reference level accuracy	Signal generator Calibration receiver Power meter Power sensor	6769A ML2530A ML4803A MA4601A	4.3.8
Average noise level	No-reflection terminator	MP752A	4.3.9
Residual response	50 Ω terminator	MP752A	4.3.10
Second harmonic distortion	Low-pass filter Fundamental frequency (Device with a attenuation of at least 70 dB at double the frequencies 10 MHz and 1 GHz)		4.3.11
Resolution bandwidth switching deviation	Signal generator	MG3633A	4.3.12

Instruments Required for Performance Test

4.3 Performance Tests

Unless otherwise specified, warm up the device under test and the measuring instruments for at least 30 minutes before making out the performance tests. Also, to display the maximum measurement accuracy, checks must be carried out at normal room temperature with minimum AC power supply voltage variations, noise, vibration, dust, and humidity.

4.3.1 Reference oscillator frequency stability

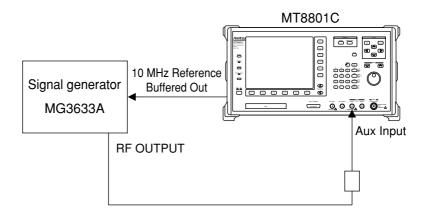
Refer to the MT8801C mainframe performance check.

4.3.2 Center frequency display accuracy

Apply a reference frequency with a known center frequency to the spectrum analyzer as shown in the figure below and set the center frequency and frequency span. Then, check the difference between the peak maker display frequency and the center frequency setting (same value as the known frequency).

In the synthesized signal generator, use a phase-locked signal source having the same accuracy as the 10 MHz

reference oscillator of the spectrum analyzer as shown in the figure below.


(1) Test target specifications

Center frequency display accuracy:
 ± (display frequency × reference frequency accuracy + span × span accuracy)

(2) Test equipment

• Synthesized signal generator: MG3633A

(3) Setup

(4) Test precaution

Set the signal generator output level to about -10 dBm.

(5) Test procedure

Step	Operation procedure
1.	Set the signal generator output frequency to 500 MHz.
2.	Press the spectrum analyzer Preset key.
3.	Execute Cal.
4.	Set the MT8801C center frequency to 500 MHz.
5.	Set the frequency span in accordance with the table below.
6.	Read the marker frequency value, and check that it is within the maximum and minimum values shown in the table below.
7.	Repeat steps 5 and 6 in accordance with the frequency span shown in the table below.

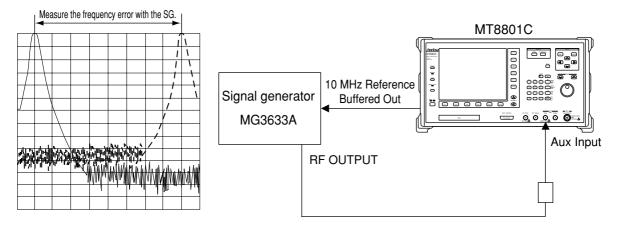
Signal generator	Center	Frequency	Center	reading	Measurement	
output frequency		span	Effective lower limit	Marker value	Effective upper limit	uncertainty
		10 kHz	499.99975 MHz		500.00025 MHz	±20 Hz
		200 kHz	499.99540 MHz		500.00460 MHz	±400 Hz
500 MHz	500 MIL-	1.01 MHz	499.97625 MHz		500.02325 MHz	±2 kHz
500 MHZ	MHz 500 MHz	2 MHz	499.95400 MHz		500.04600 MHz	±4 kHz
		10 MHz	499.77000 MHz		500.23000 MHz	±20 kHz
		100 MHz	497.70000 MHz		502.30000 MHz	±200 kHz

Center Frequency Display Accuracy Test

4.3.3 Frequency span display accuracy

Setup the equipment as shown in the figure below and set the signal generator output to the frequency of the 1st and 9th divisions.

Read these frequencies with the marker, and find the span accuracy.


(1) Test target specifications

• Frequency span accuracy: ±2.5%

(2) Test equipment

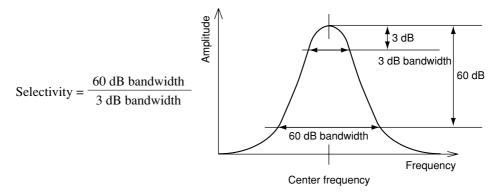
• Synthesized signal generator: MG3633A

(4) Test precaution

Set the signal generator output level to about –10 dBm.

Step	Operation procedure
1.	Press the spectrum analyzer Preset key.
2.	Execute Cal.
3.	Set the MT8801C to Band: Band 0 and Center Freq: 1.5 GHz.
4.	Set the signal generator output to the first f1 frequency shown in the table below.
5.	Read the spectrum waveform peak marker frequency, and record it as f1'.
6.	Set the signal generator output to the first f2 frequency shown in the table below.
7.	Read the spectrum waveform peak marker frequency, and record it as f2'.
8.	Calculate (f2'-f1')/0.8, and check that the result is within the maximum and minimum values shown is the table below.
9.	Repeat steps 3 through 8 for the remaining frequencies in the table.

Frequency Span Display Accuracy

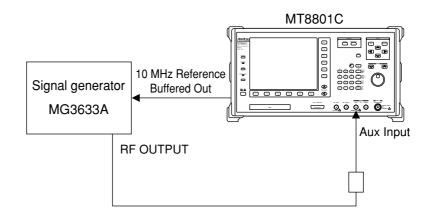

Signal generator			Magaziramant				
f1	f2	Center frequency	Frequency span	Effective lower limit	Calculated value	Effective upper limit	Measurement uncertainty
1499.996 MHz	1500.004 MHz		10 kHz	9.778 kHz		10.222 kHz	±28 Hz
1499.92 MHz	1500.08 MHz		200 kHz	195.570 kHz		204.43 kHz	±570 Hz
1499.2 MHz	1500.8 MHz		2 MHz	1.9443 MHz		2.0433 MHz	±5.7 kHz
1496 MHz	1504 MHz	1.5 GHz	10 MHz	9.7783 MHz		10.2217 MHz	±28.3 kHz
1460 MHz	1540 MHz		100 MHz	97.783 MHz		102.217 MHz	±283 kHz
700 MHz	2300 MHz		2 GHz	1.95566 GHz		2.04434 GHz	±5.66 MHz
300 MHz	2700 MHz		3 GHz	2.93349 GHz		3.06651 GHz	±8.49 MHz

Expression : $\frac{(f2' - f1')}{0.8}$

4.3.4 Resolution bandwidth and selectivity

If two input signals are separated by only 3 dB (IF final stage), analysis can be performed with these two signals as a two-spectrum waveform. This is called "resolution bandwidth (RBW)".

On the other hand, selectivity improves as the 60 dB bandwidth becomes narrower. Therefore, measure the bandwidth at points 3 dB and 60 dB down from the center frequency peak point as shown in the figure below, and calculate the selectivity from the following expression:



(1) Test target specifications

- Resolution bandwidth: $\pm 2\%$ (300 Hz to 300 kHz), $\pm 10\%$ (1 MHz)
- Selectivity: $\leq 5:1$

(2) Test equipment

- Synthesized signal generator: MG3633A
- (3) Setup

(4) Test precaution

Set the signal generator output level to about +10 dBm.

Step	Operation procedure
1.	Press the spectrum analyzer Preset key.
2.	Execute Cal.
3.	Set the MT8801C as follows: Trace-Time
	Freq: 100 MHzRBW (Manual):1 MHzVBW (Manual): Value at which 60 dB down level is read smoothly.
4.	Set the signal generator output frequency to 100 MHz.
5.	Execute Peak \rightarrow RLV to move the signal level to the line at the top of the screen.
6.	Select Delta Marker.
7.	Lower the signal generator output frequency to the frequency at which the marker reads –3 dB. Make the signal generator output frequency at this time f1.
8.	Raise the signal generator output frequency to the frequency at which the marker reads –3 dB. Make the signal generator output frequency at this time f2.
9.	Lower the signal generator output frequency to the frequency at which the marker reads –60 d Make the signal generator output frequency at this time f3.
10.	Raise the signal generator output frequency to the frequency at which the marker reads –60 dB. Make the signal generator output frequency at this time f4.
11.	Calculate the 3 dB bandwidth, 60 dB bandwidth, and selectivity as follows: 3 dB bandwidth = f2-f1 60 dB bandwidth = f4-f3 Selectivity = 60 dB bandwidth/3 dB bandwidth Check that the 3 dB bandwidth is within the maximum and minimum values. Check that the calculated selectivity is 5 or less.
12.	Repeat steps 4 through 11 in accordance with RBW shown in the table below.

(5) Test procedure

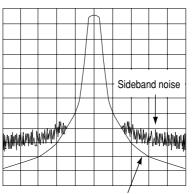
Section 4 Peformance Tests

Resolution Bandwidth Test

RBW	f1	f2	3 dB bandwidth	Effective lower limit	Effective upper limit	Measurement uncertainty
1 MHz				903.8 kHz	109.62 kHz	
300 kHz				295.14 kHz	304.86 kHz	
100 kHz				98.38 kHz	101.62 kHz	
30 kHz				29.514 kHz	30.486 kHz	
10 kHz				9.838 kHz	10.162 kHz	±0.38 %
3 kHz				2.952 kHz	3.048 kHz	
1 kHz				984 Hz	1016 Hz]
300 Hz				295.1 Hz	304.9 Hz	

Selectivity Test

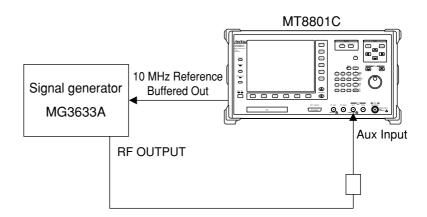
RBW	f3	f4	60 dB bandwidth	3 dB bandwidth	Selectivity	Measurement uncertainty	Effective upper limit
1 MHz							
300 kHz							
100 kHz							
30 kHz						0.000	4.96
10 kHz						0.038	4.90
3 kHz							
1 kHz							
300 Hz							


4.3.5 Sideband noise level

This test checks the noise dB level at a point of a certain frequency from the spectrum waveform peak point when a signal with a very low sideband noise level is input from the device under test with the resolution bandwidth kept constant.

Since the average noise level is taken, measure the noise level by inserting a video filter (VBW).

The sideband noise level is the spectrum response modulated by the internal noise of the spectrum analyzer.


If this response is large, the actual filter envelop will be masked by noise as shown in the figure at the left and measurement will become impossible.

Actual filter envelop

(1) Test target specifications

- Sideband noise (C/N): ≤-95 dBc/Hz (frequency 1 GHz, 100 kHz offset)
 ≤-115 dBc/HZ (frequency 1 GHz, 10 kHz offset)
- (2) Test equipment
 - Synthesized signal generator: MG3633A
- (3) Setup

Section 4 Peformance Tests

(4) Test procedure

Step	Operation procedure							
1.	Set the signal generator to 1 GHz, +10 dBm.							
2.	Press the spectrum analyzer Preset key.							
3.	Execute Cal.							
4.	Set the MT8801C as follows:							
	Center Freq: 1 GHz Span: 40 kHz (table below)							
	Reference Level: +10 dBm Detection: Sample							
	RBW: 1 kHz (table below)VBW: 10 Hz (table below)							
	Zone Width: Spot							
5.	Press the Peak Search key. The current marker is set to the peak point.							
6.	Press the Measure key, and select C/N Ratio Measure.							
7.	Press the Meas On key, and execute C/N measurement.							
8.	Press the Marker key. Then, turn the rotary knob to move the marker to the right so that the Zone							
	Center display frequency becomes the frequency shown in the table below.							
9.	Check that the sideband noise value does not exceed the rated value.							
10.	Repeat steps 4 through 9 in accordance with the table shown below.							

Sideband Noise Level Test

Frequency			Zone Center	S	ideband noise	Magguramont
span	RBW	VBW	(offset)	Measured value	Effective upper limit	Measurement uncertainty
40 kHz	1 kHz	10 Hz	10 kHz		\leq -95.82 dBc	±0.82
400 kHz	10 kHz	100 Hz	100 kHz		$\leq -116.11 \text{ dBc}$	±1.11

4.3.6 Screen amplitude display linearity

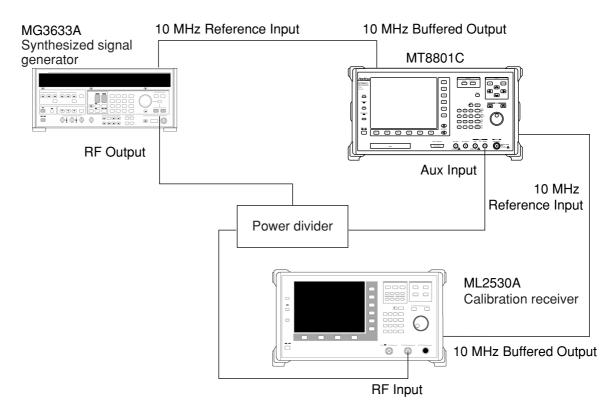
This check tests the LOG display error per division of the vertical axis of the screen. LOG display linearity tests if the scale is proportional to the logarithm (dB) of the input level.

Apply a signal with an accurate input level to the spectrum analyzer Aux Input connector through an external attenuator. Calculate the error from the attenuator attenuation and the delta marker reading at the peak of the trace waveform.

(1) Test target specifications

• LOG linearity:

Frequency 10 MHz to 2.2 GHz, reference level ≥+0 dBm (MAIN connector), ≥-20 dBm (AUX connector)


 $\pm 0.5~\text{dB}~(0~\text{to}~-50~\text{dB},$ resolution bandwidth ${\leq}1~\text{MHz})$

- $\pm 1.0~\text{dB}~(0~\text{to}~-70~\text{dB},$ resolution bandwidth ${\leq}30~\text{kHz})$
- $\pm 1.0 \text{ dB}$ (0 to -80 dB, resolution bandwidth $\leq 1 \text{ kHz}$)

(2) Test equipments

- Synthesized signal generator: MG3633A
- Calibration receiver ML2530A
- Power divider

(3) Setup

(4) Test procedure

Step	Operation procedure					
1.	Set the signal generator to 101 MHz, -12 dBm.					
2.	Execute Cal of the calibration receiver.					
3.	Press the spectrum analyzer Preset key.					
4.	Execute Cal.					
5.	Set the MT8801C as follows:					
	Center Freq: 101 MHz Span: 3 MHz					
	Reference Level: 0 dBm Attenuator: 0 dB					
	RBW: 1 kHz VBW: Minimum					
6.	Press the Peak \rightarrow REF key. The peak point of the spectrum waveform is set to the reference level.					
7.	At the end of one sweep, press the Delta Marker key.					
8.	Set the measured value of the calibration receiver to "Measure to Reference".					
9.	Read the delta marker level value (B) of the measured value (A) of the calibration receiver when the					
	output level value of the signal generator value is changed as shown in the table below.					

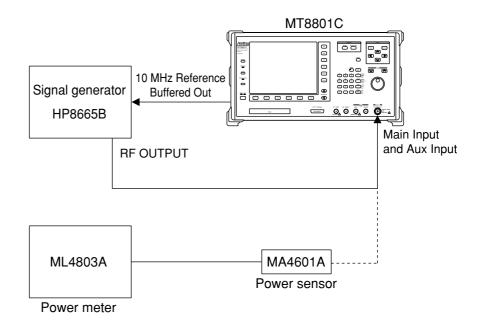
10. Repeat steps 5 through 9 in accordance with the table below.

LOG Linearity Test

Set value of output level	Error (B – A) (B)			Measurement	Effective	Effective
of signal generator (dB)	RBW=1 kHz	RBW=30 kHz	RBW=1 MHz	uncertainty	lower limit	upper limit
0	0 (Reference)	0 (Reference)	0 (Reference)			
-10				±0.03 dB		
-20				10.05 dB	-0.47 dB	+0.47 dB
-30						
-40					-0.46 dB	+0.46 dB
-50					-0.40 uD	+0.40 uD
-60				±0.04 dB		
-70					–0.96 dB	+0.96 dB
-80						

4.3.7 Frequency response

When two or more signals of different frequencies but equal amplitude are input, the spectrum analyzer must display the spectrums at the same amplitude.


(1) Test target ratings

 Frequency response: 100 MHz reference frequency, ambient temperature 18 to 28°C Input connector Main, input ATT 30 dB ±0.5 dB Input connector Aux, input ATT 10 dB ±0.5 dB

(2) Test equipments

- Signal generator: HP8665B
- Power meter: ML4803A
- Power sensor: MA4601A

(3) Setup

(4) Test precaution

Carry out this test after a warm-up of at least 60 minutes at an ambient temperature of 18 to 28°C.

(5) Test procedure 1

Step	Operation procedure				
1.	Set the signal generator to 100 MHz, 0 dBm.				
2.	Connect the signal generator output to the power sensor of the power meter through a coaxial cable.				
3.	Read the power meter display.				
4.	Change the signal generator output frequency as shown in the table, and find the calibration value a each frequency referenced to the level at 100 MHz.				

Test procedure 2

Step	Operation procedure					
1.	Connect the signal generator output to the spectrum analyzer Aux Input connector.					
2.	Press the spectrum analyzer Preset key.					
3.	Execute Cal.					
4.	Set the spectrum analyzer as follows: Center Freq: 100 MHz Span: 200 kHz Attenuator: 10 dB Reference Level: 0 dBm					
5.	Press the Peak \rightarrow CF key, then press the Delta Marker key.					
6.	Set the spectrum analyzer center frequency as shown in the table below. Then, read the delta marke level at each frequency and find the deviation from the following expression: Deviation = Delta marker level – test frequency calibration value					

Test procedure 3

Step	Operation procedure					
1.	Connect the signal generator output to the spectrum analyzer Main Input/Output connector.					
2.	Press the spectrum analyzer Preset key.					
3.	Set the spectrum analyzer as follows:Center Freq: 100 MHzSpan: 200 kHzAttenuator: 35 dBReference Level: 0 dBm					
4.	Press the Peak \rightarrow CF key, then press the Delta Marker key.					
5.	Set the spectrum analyzer center frequency as shown in the table. Then, read the delta marker level a each frequency, and find the deviation from the following expression: Deviation = Delta marker level – test frequency calibration value					

4.3 Performance Tests

Frequency Response Test (Aux Input)

Test frequency	Calibration value (dB)	Delta marker level (dB)	Deviation (dB)	Measurement uncertainty	Effective lower limit	Effective upper limit
100 MHz	0 (reference)	0 (reference)	0 (reference)			—
200 MHz						
500 MHz						
1 GHz						
1.5 GHz				±0.17 dB	-0.33 dB	+0.33 dB
2 GHz						
2.5 GHz						
3 GHz						

Frequency Response Test (Main Input/Output)

Test frequency	Calibration value (dB)	Delta marker level (dB)	Deviation (dB)	Measurement uncertainty	Effective lower limit	Effective upper limit
100 MHz	0 (reference)	0 (reference)	0 (reference)			—
200 MHz						
500 MHz						
1 GHz						
1.5 GHz				±0.17 dB	-0.33 dB	+0.33 dB
2 GHz						
2.5 GHz						
3 GHz						

4.3.8 Reference level accuracy

This performance check tests the absolute amplitude level at 100 MHz. Check the level accuracy by applying the output of a signal generator calibrated with a standard power meter to the spectrum analyzer.

(1) Test target specifications

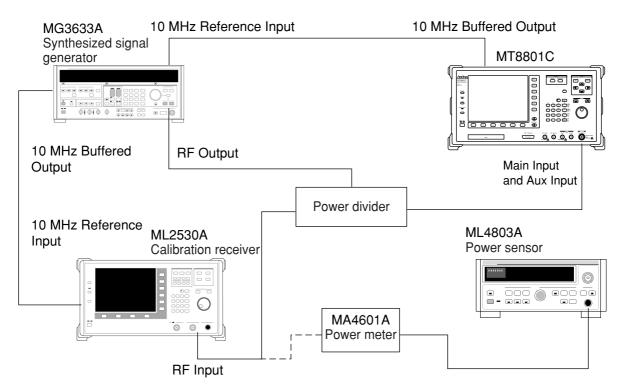
• Reference level accuracy:

Frequency 100 MHz, span 2 MHz (RBW, VBW, and Sweep Time set to Auto) after automatic calibration

Main Input/Output connector

 $\pm 0.5 \text{ dB} (+10.1 \text{ to } +40 \text{ dBm})$

 $\pm 1.0 \text{ dB} (-60 \text{ to } +10 \text{ dBm})$


Aux Input connector

- $\pm 0.5 \text{ dB} (-9.9 \text{ to } +20 \text{ dBm})$
 - $\pm 1.0~\text{dB}~(-80~\text{to}~-10~\text{dBm})$

(2) Test equipments

- Signal generator: MG3633A
- Calibration receiver: ML2530A
- Power meter: ML4803A
- Power sensor: MA4601A
- Power divider

(4) Test precautions

- 1) Always set the resolution bandwidth (RBW), video bandwidth (VBW) and sweep time (Sweep Time) to Auto.
- 2) Do this test after a warm-up of at least 60 minutes.

Step	Operation procedure
1.	Initialize the MT8801C, the signal generator, and the calibration receiver.
2.	Execute Cal of the MT8801C, the calibration receiver, and power meter.
3.	Connect the divider OUTPUT connector to the power sensor.
4.	Set the signal generator frequency to 100 MHz, and adjust the signal generator level so that the power meter indicates +10 dBm.
5.	Connect the divider output to the calibration receiver Input connector.
6.	Set the spectrum analyzer as follows: Center Freq: 100 MHz Span: 2 MHz Reference Level: 10 dBm
7.	Read the marker level (P_1), and the measured level (P_0) of the calibration receiver.
8.	Set the output level of the signal generator and Reference Level as shown in the table below, and read the marker level (P_1), and the measured level (P_0) of the calibration receiver, at each setting.
9.	Find the error from the following expression: Error = $P_1 - P_0$
10.	Change the spectrum analyzer input connector to the Main Input connector, and repeat steps 6 to 9.

(5) Test procedure

Set value of Reference Level	Set value of output level of signal generator	Error (P1 - P0) (dB)	Measurement uncertainty	Effective lower limit	Effective upper limit
+10 dBm	0 dB			-0.28 dB	+0.28 dB
0 dBm	10 dB			-0.28 ub	+0.28 ub
-10 dBm	20 dB				
-20 dBm	30 dB				
-30 dBm	40 dB				
-40 dBm	50 dB		±0.22 dB	0 70 JD	10 70 JD
-50 dBm	60 dB			–0.78 dB	+0.78 dB
-60 dBm	70 dB				
-70 dBm	80 dB				
-80 dBm	85 dB				

Reference Level Accuracy Test (Aux Input)

Reference Level Accuracy Test (Main Input)

Set value of Reference Level	Set value of output level of signal generator	Error (P1 - P0) (dB)	Measurement uncertainty	Effective lower limit	Effective upper limit
+10 dBm	0 dB				
0 dBm	10 dB				
-10 dBm	20 dB				
-20 dBm	30 dB		±0.22 dB	–0.78 dB	+0.78 dB
-30 dBm	40 dB				
-40 dBm	50 dB				
-50 dBm	60 dB				

4.3.9 Average noise level

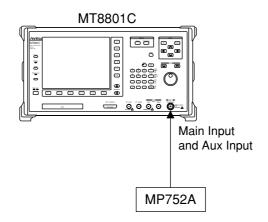
The internal noise distributed evenly in proportion to the resolution bandwidth over the entire measurement frequency band is called the "average noise level."

(1) Test target ratings

- Average noise level:
 - Resolution bandwidth 1 kHz, video bandwidth 10 Hz
 - At Main connector, input attenuator 20 dB

 \leq -90 dBm (10 MHz to 2.2 GHz)

≤–85 dBm (>2.2 GHz)


- At Aux connector, input attenuator 0 dB
 - \leq -110 dBm (10 MHz to 2.2 GHz)

≤–105 dBm (>2.2 GHz)

(2) Test equipment

• No-reflection terminator: MP752A

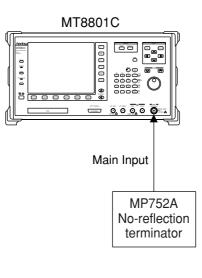
(3) Setup

(4) Test procedure

Step	operation procedure					
1.	Press the spectrum analyzer F	Preset key.				
2.	Execute Cal.					
3.	Terminate the spectrum analy	zer Aux Input connector with the MP752A No-reflection terminator.				
4.	Set the spectrum analyzer as t	follows:				
	Start Freq: 10 MHz	Stop Freq: 2.2 GHz				
	Reference level: -50 dBm	Attenuator: 0 dB				
	RBW: 30 kHz	VBW: 3 kHz				
	Detection: Sample					
5.	Press the Single key, and perf	form one sweep.				
6.	Press the Peak \rightarrow CF key to s	et the peak frequency to the center frequency.				
7.	Set the spectrum analyzer as follows (time domain):					
	Span: 0 Hz					
	RBW: 1 kHz	VBW: 10 Hz				
8.	Sequentially press the Trace-T count to 16.	Time, Storage, Average, and Averaging Count keys, and set the averaging				
9.	Press the Continuous key, and	d make 16 averaging count sweeps.				
10.	Press the Peak Search key, an	d read the marker level.				
11.	Change the Start Freq and Sto	op Freq in accordance with the table below, and repeat the steps 3 to 10				
12.	Change the input terminal to the spectrum analyzer Main Input connector, and repeat steps 3 through					
	11.					

Average Noise Level Test

Input	Spectrum an	alyzer setting	Average noise level		Measurement	Effective
terminal	Start Freq	Stop Freq	Marker reading	Rating	uncertainty	upper limit
Main Input	10 MHz	2.2 GHz		<-90 dBm		-91.25 dBm
Wall Input	2.2 GHz	3 GHz		<-85 dBm		-86.25 dBm
Aux Input	10 MHz	2.2 GHz		<-110 dBm	±1.25 dB	-111.25 dBm
	2.2 GHz	3 GHz		<-105 dBm		-106.25 dBm


4.3.10 Residual response

(1) Test target specifications

- Residual response:
 - \leq -70 dBm (Main connector, input attenuator 20 dB)
 - \leq -90 dBm (AUX connector, input attenuator 0 dB)

(2) Test equipment

- No-reflection terminator: MP752A or equivalent
- (3) Setup

(4) Test Procedure

Step	Operation procedure	
1.	Press the MT8801C Preset key.	
2.	Set the MT8801C as follows on the Instrument Setup screen, then move to the Spectru screen. RF Input/Output: Main	m Analyze
3.	Set the spectrum analyzer as follows:Band: Band 1Ref. Level: -50 dBmRBW: 3 kHzVBW: 3 kHzSweep Time: AutoAttenuator: 20 dB	
4.	When HPF setting is Off, set Span: Full. When HPF setting is On, set Start Freq: 1600 MHz and Stop Freq: 3000 MHz.	
5.	Perform a single sweep, then read the peak level to judge if the measured value is specifications.	within the
6.	Move to the Instrument Setup screen. Set the MT8801C as follows: RF Input/Output: Aux	
7.	Move to the Spectrum Analyzer screen, again. Set Attenuator : 0 dB. Repeat the steps 5 and 6.	

Residual Response Test

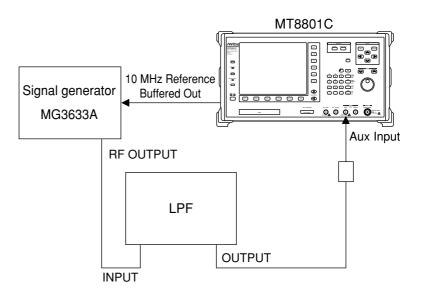
	Measurement frequency	Measured value	Measurement uncertainty	Effective upper limit
Worst value at Main	MHz	dBm	±1.0 dBm	-71 dBm
Worst value at Aux	MHz	dBm		–91 dBm

4.3.11 Second harmonic distortion

Even when a signal with no harmonic distortion is applied to the spectrum analyzer, the input mixer nonlinearity of the spectrum analyzer generates harmonics that can be seen on the screen.

Of the harmonics displayed on the screen, the second harmonic has the highest level. The test point measures the level difference between the fundamental wave and the second harmonic wave when a signal having a distortion at least 20 dB lower than the internal distortion of the spectrum analyzer is applied to the spectrum analyzer. If a low distortion signal source is not available, a low distortion signal is applied to the spectrum analyzer through an LPF.

(1) Test target specifications


• Second harmonic distortion: Mixer input level –30 dBm

 \leq -55 dBc (input frequency 10 to 100 MHz)

≤–60 dBc (input frequency 100 to 1500 MHz)

(2) Test equipments

- Signal generator: MG3633A
- LPF: Device with an attenuation of at least 70 dB at double the fundamental frequency
- (3) Setup

(4) Test procedure

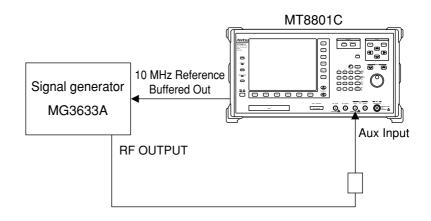
Step	Operation procedure
1.	Press the spectrum analyzer Preset key.
2.	Execute Cal.
3.	Set the LPF cutoff frequency to approximately 12.8 MHz.
4.	Set the signal generator output to 10 MHz, -30 dBm.
5.	Set the spectrum analyzer as follows:Center Freq: 10 MHzSpan: 10 kHzReference Level: -30 dBmAttenuator: 0 dBInput terminal: Aux Input
6.	Adjust the signal generator output level so that the spectrum waveform peak point moves to the Reference Level (line at the top of the screen scale).
7.	Move the marker to the peak of the spectrum waveform, and set the marker to Delta Marker.
8.	To display the second harmonic on the screen, set the center frequency to double the fundamental frequency. Since the delta marker level indicates the level difference between the fundamental wave and the second harmonic. Read the delta maker level.
9.	Change the input frequency in accordance with the table below, and repeat steps 3 through 8.

Second Harmonic Distortion Test

Signal generator output frequency		Delta marker level	Rating	Measurement uncertainty	Effective upper limit
10 MHz	12.8 MHz		-55 dBc	±1.2 dB	-56.2 dB
1 GHz	1.2 GHz		-60 dBc	⊥1.2 UD	-61.2 dB

4.3.12 Resolution bandwidth (RBW) switching deviation

This performance check measures the peak level deviation when the resolution bandwidth (RBW) is switched.


(1) Test target specifications

 Resolution bandwidth switching deviation: ±0.1 dB referenced to 3 kHz resolution bandwidth

(2) Test equipment

• Signal generator: MG3633A

(3) Setup

(4) Test procedure

Step	Operation procedure
1.	Press the spectrum analyze Preset key.
2.	Execute Cal.
3.	Set the signal generator output to 100 MHz, 0 dBm.
4.	Set the spectrum analyzer as follows:
	Center Freq: 100 MHz Span: 15 kHz
	Reference Level: 0 dBm RBW: 3 kHz
	Input terminal: Aux Input
5.	Press the Peak \rightarrow CF key to set the peak frequency to the center frequency.
6.	Set the marker to Delta Marker.
7.	Set RBW and Span in accordance with the table below, and measure the level deviation for each RBW
	as described in Step 8.
8.	Press the Peak Search key, and move the current marker to the spectrum waveform peak point. Rea
	the delta marker level.

Spectrum analyzer setting		Delta marker	Rating	Measurement	Effective	Effective	
RBW	Span	level	nating	uncertainty	lower limit	upper limit	
300 Hz	10 kHz						
1 kHz	10 kHz						
3 kHz	15 kHz	$0.0 \ dB$ (reference)					
10 kHz	50 kHz		+0.1 dB	±0.01 dB	-0.09 dB	+0.09 dB	
30 kHz	150 kHz		+0.1 dD	±0.01 dB	-0.07 dD	+0.09 uD	
100 kHz	500 kHz						
300 kHz	1.5 MHz						
1 MHz	5 MHz						

Resolution Bandwidth Switching Deviation Test

4.3.13 Performance test results entry form examples

Examples of forms for summarizing the results of MT8801C Spectrum Analyzer function performance checks are shown below.

When making performance checks, copy and use this section.

Signal generator	Center	Frequency	Center	reading	Measurement	
output frequency		span	Effective lower limit	Marker value	Effective upper limit	uncertainty
		10 kHz	499.99975 MHz		500.00025 MHz	±20 Hz
	500 MHz	200 kHz	499.99540 MHz		500.00460 MHz	±400 Hz
500 MHz		1.01 MHz	499.97625 MHz		500.02325 MHz	±2 kHz
500 MHZ		2 MHz	499.95400 MHz		500.04600 MHz	±4 kHz
		10 MHz	499.77000 MHz		500.23000 MHz	±20 kHz
		100 MHz	497.70000 MHz		502.30000 MHz	±200 kHz

1. Center frequency display accuracy

2. Frequency span accuracy

Signal g	enerator		Magguramant				
f1	f2	Center frequency	Frequency span	Effective lower limit	Calculated value	Effective upper limit	Measurement uncertainty
1499.996 MHz	1500.004 MHz		10 kHz	9.778 kHz		10.222 kHz	±28 Hz
1499.92 MHz	1500.08 MHz		200 kHz	195.570 kHz		204.43 kHz	±570 Hz
1499.2 MHz	1500.8 MHz		2 MHz	1.9443 MHz		2.0433 MHz	±5.7 kHz
1496 MHz	1504 MHz	1.5 GHz	10 MHz	9.7783 MHz		10.2217 MHz	±28.3 kHz
1460 MHz	1540 MHz		100 MHz	97.783 MHz		102.217 MHz	±283 kHz
700 MHz	2300 MHz		2 GHz	1.95566 GHz		2.04434 GHz	±5.66 MHz
300 MHz	2700 MHz		3 GHz	2.93349 GHz		3.06651 GHz	±8.49 MHz

3. Resolution bandwidth and selectivity

Resolution Bandwidth and Selective Test

RBW	f1	f2	3 dB bandwidth	Effective lower limit	Effective upper limit	Measurement uncertainty
1 MHz				903.8 kHz	109.62 kHz	
300 kHz				295.14 kHz	304.86 kHz	
100 kHz				98.38 kHz	101.62 kHz	
30 kHz				29.514 kHz	30.486 kHz	
10 kHz				9.838 kHz	10.162 kHz	±0.38 %
3 kHz				2.952 kHz	3.048 kHz	
1 kHz				984 Hz	1016 Hz	
300 Hz				295.1 Hz	304.9 Hz	

Selectivity Test

RBW	f3	f4	60 dB bandwidth	3 dB bandwidth	Selectivity	Measurement uncertainty	Effective upper limit	
1 MHz								
300 kHz								
100 kHz							4.96	
30 kHz						0.029		
10 kHz						0.038		
3 kHz						-		
1 kHz								
300 Hz								

4. Sideband noise level

Frequency			Zone Center	S	ideband noise	Measurement
span	RBW	VBW (offset)		Measured value	Effective upper limit	uncertainty
40 kHz	1 kHz	10 Hz	10 kHz		\leq -95.82 dBc	±0.82
400 kHz	10 kHz	100 Hz	100 kHz		≤-116.11 dBc	±1.11

4.3 Performance Tests

Set value of output level	E	rror (B – A) (E	Measurement	Effective	Effective	
of signal generator (dB)	RBW=1 kHz	RBW=30 kHz	RBW=1 MHz	uncertainty	lower limit	upper limit
0	0 (Reference)	0 (Reference)	0 (Reference)			
-10				±0.03 dB		
-20				10.03 dB	–0.47 dB	+0.47 dB
-30						
-40					-0.46 dB	+0.46 dB
-50					-0.40 dB	+0.40 uD
-60				±0.04 dB		
-70					–0.96 dB	+0.96 dB
-80						

5. Screen amplitude display linearity

6. Frequency response

Frequency Response Test (Aux Input)

Test frequency	Calibration value (dB)	Delta marker level (dB)	Deviation (dB)	Measurement uncertainty	Effective lower limit	Effective upper limit
100 MHz	0 (reference)	0 (reference)	0 (reference)			
200 MHz						
500 MHz						
1 GHz						
1.5 GHz				±0.17 dB	-0.33 dB	+0.33 dB
2 GHz						
2.5 GHz						
3 GHz						

Frequency Response Test (Main Input)

Test frequency	Calibration value (dB)	Delta marker level (dB)	Deviation (dB)	Measurement uncertainty	Effective lower limit	Effective upper limit
100 MHz	0 (reference)	0 (reference)	0 (reference)			—
200 MHz						
500 MHz						
1 GHz						
1.5 GHz				±0.17 dB	-0.33 dB	+0.33 dB
2 GHz						
2.5 GHz						
3 GHz						

7. Reference level accuracy

Set value of Reference Level	Set value of output level of signal generator	Error (P1 - P0) (dB)	Measurement uncertainty	Effective lower limit	Effective upper limit
+10 dBm	0 dB			-0.28 dB	+0.28 dB
0 dBm	10 dB			-0.28 db	+0.28 db
-10 dBm	20 dB				
-20 dBm	30 dB				
-30 dBm	40 dB		±0.22 dB		
-40 dBm	50 dB		±0.22 dB	–0.78 dB	+0.78 dB
-50 dBm	60 dB			-0.78 db	+0.78 ub
-60 dBm	70 dB				
-70 dBm	80 dB				
-80 dBm	85 dB				

Reference Level Accuracy Test (Aux Input)

Reference Level Accuracy Test (Main Input)

Set value of Reference Level	Set value of output level of signal generator	Error (P1 - P0) (dB)	Measurement uncertainty	Effective lower limit	Effective upper limit
+10 dBm	0 dB				
0 dBm	10 dB				
-10 dBm	20 dB				
-20 dBm	30 dB		±0.22 dB	–0.78 dB	+0.78 dB
-30 dBm	40 dB				
-40 dBm	50 dB				
-50 dBm	60 dB				

8. Average noise level

Input	Spectrum analyzer setting Average noise leve		oise level	Measurement	Effective	
terminal	Start Freq	Stop Freq	Marker reading	Rating	uncertainty	upper limit
Main Input	10 MHz	2.2 GHz		<-90 dBm		–91.25 dBm
Wiam mput	2.2 GHz	3 GHz		<-85 dBm		-86.25 dBm
Aux Input	10 MHz	2.2 GHz		<-110 dBm	±1.25 dB	-111.25 dBm
Aux input	2.2 GHz	3 GHz		<-105 dBm		-106.25 dBm

9. Residual Response

	Measurement frequency	Measured value	Measurement uncertainty	Effective upper limit
Worst value at Main	MHz	dBm	±1.0 dBm	–71 dBm
Worst value at Aux	MHz	dBm	±1.0 dBIII	–91 dBm

4.3 Performance Tests

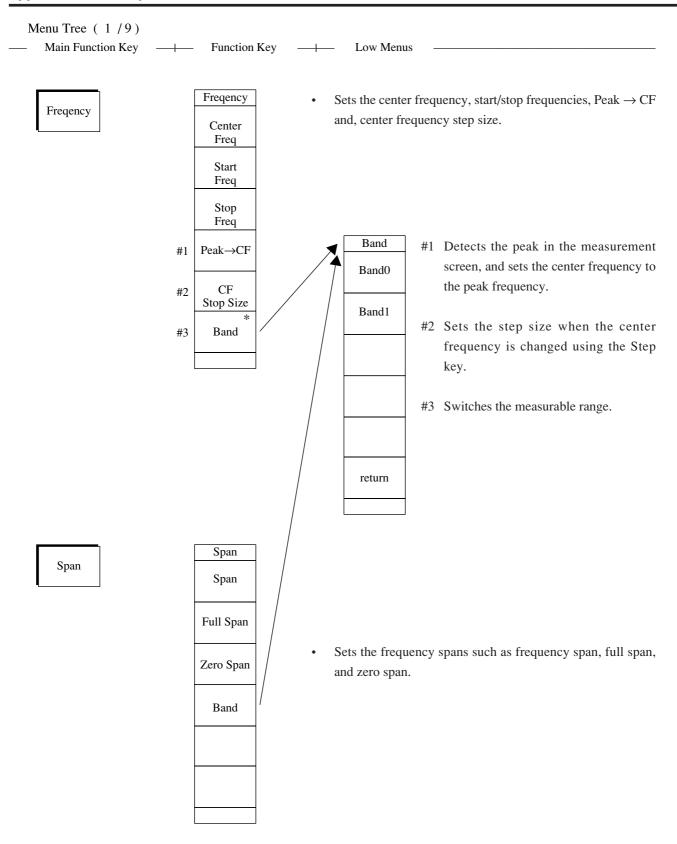
10. Second harmonic distortion

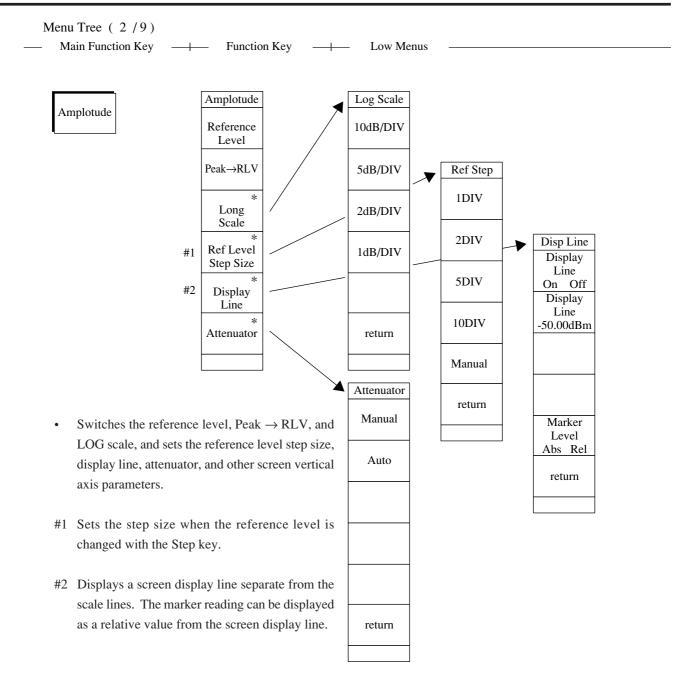
Signal generator output frequency	LPF cutoff frequency	Delta marker level	Rating	Measurement uncertainty	Effective upper limit
10 MHz	12.8 MHz		-55 dBc	±1.2 dB	-56.2 dB
1 GHz	1.2 GHz		-60 dBc	1.2 dB	-61.2 dB

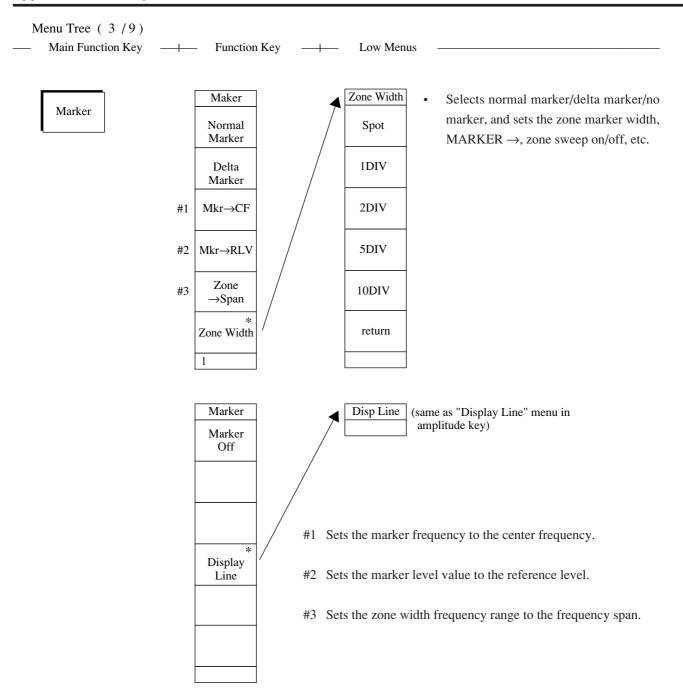
11. Resolution bandwidth switching deviation test

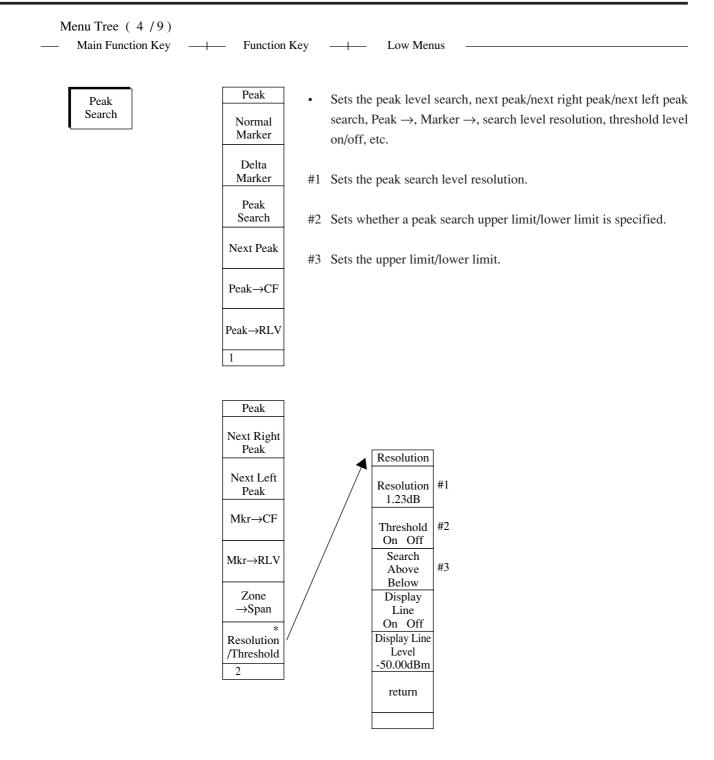
Spectrum and	alyzer setting	Delta marker	Rating	Measurement	Effective	Effective	
RBW	Span	level	naing	uncertainty	lower limit	upper limit	
300 Hz	10 kHz						
1 kHz	10 kHz						
3 kHz	15 kHz	$0.0 \ dB$ (reference)					
10 kHz	50 kHz		+0.1 dB	±0.01 dB	-0.09 dB	+0.09 dB	
30 kHz	150 kHz		+0.1 uD	±0.01 dB	-0.09 uD	+0.09 uD	
100 kHz	500 kHz						
300 kHz	1.5 MHz						
1 MHz	5 MHz						

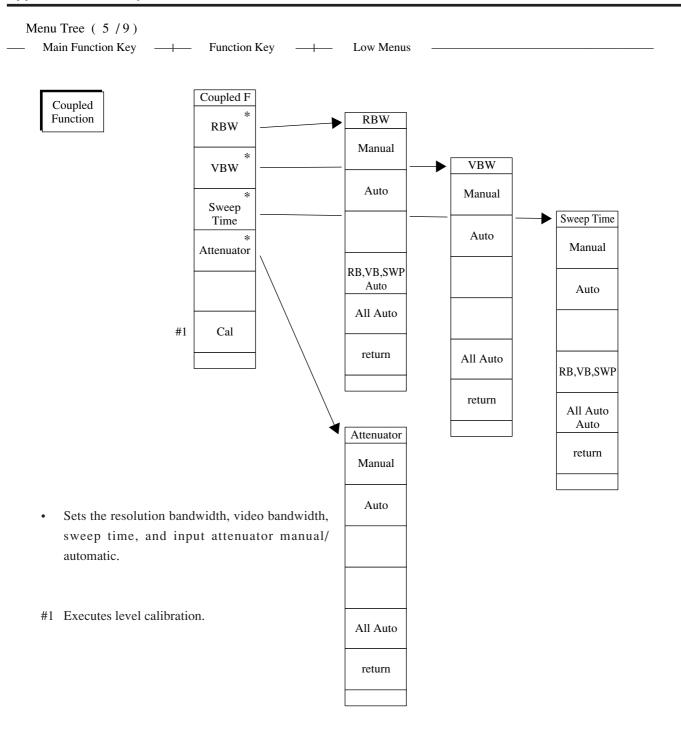
Appendixes

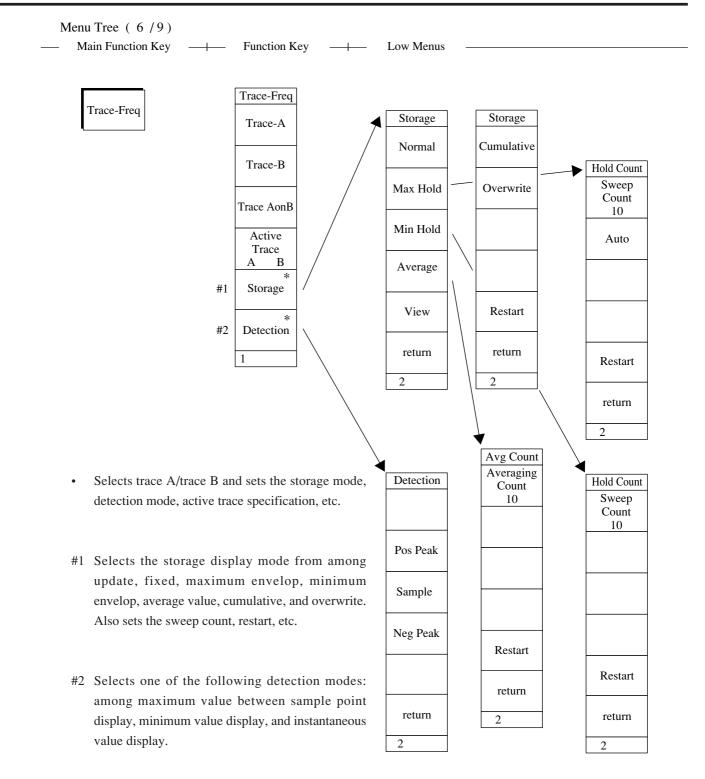

Appendix A	Soft-Key Menu	A-1
Appendix B	Keywords Index	B-1

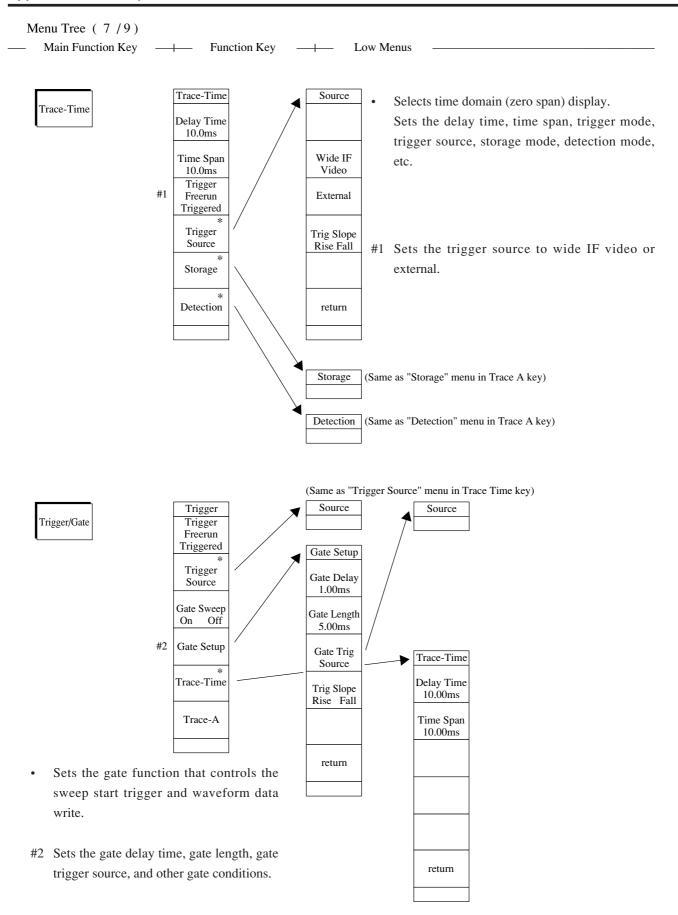

Appendixes

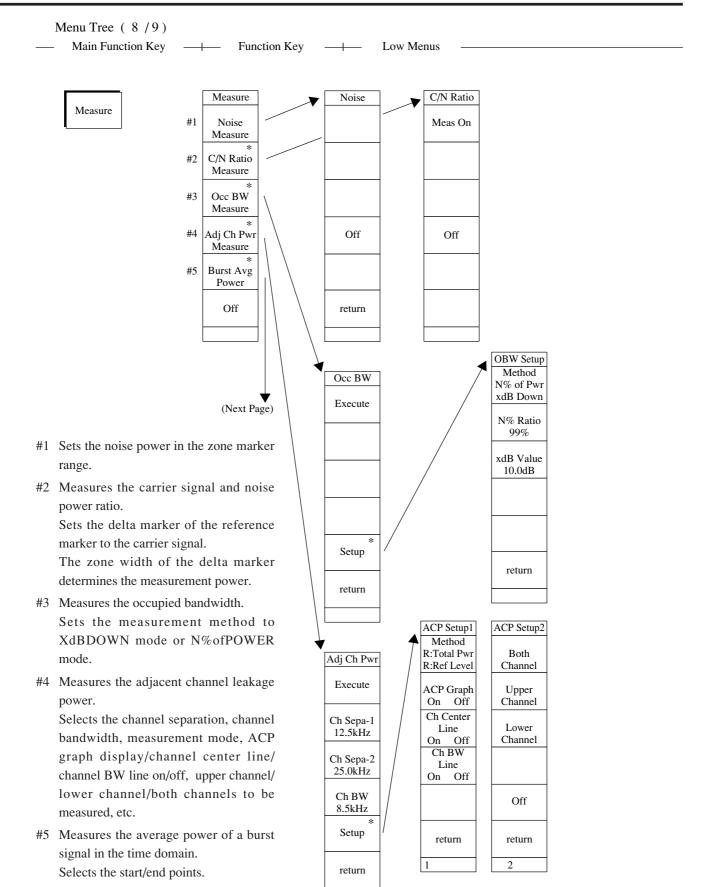

In this section, soft-key menu functions and its hierarchical system are described using a tree.


Matters to be noted about the tree are shown below.


- (1) Main function Key indicates [F1 to F6] key on the front panel.
- (2) Function Key are the menus at the top level which are displayed on the right side of screen when the [F7 to F12] key is pressed. Lower menus indicates other menus below the top menus.
- (3) When a soft key with an appended asterisk (*) is pressed in these menus, the menu moves to the lower menu indicated by the arrow symbol (→).
- (4) When the Return key is pressed at a lower menu, the next-higher menu is returned.
- (5) Menus with more than six items are split into several pages.
- (6) The menu page construction and currently-displayed page are indicated in the lower part of the menu. To move to the next page, press the [Next Menu] key.
- (7) Function key and soft keys prefixed by a sharp symbol (#) at the left of the menu frame, give an outline explanation of the function.







Menu Tree (9/9) — Main Function Key	 Function Key —+	— L	ow Menus -		-
	(Previous Page) –		 Burst Avg Execute 		
			Start Point 100		
			Stop Point 100		
			return		

A.2 Soft-key Menu List

Menu	Menu Tree (page/ 9)
A) Active trace	6
Ajd ch Pwr Measure	8
Amplitude	2
Attenuator	2, 5
Average	6
Averaging Count	6
B Band	1
Burst Avg Power	8
C) C/N Ratio Measure	8
Cal	5
Center Freg	1
CF Step Size	1
Coupled Function	5
Cumulative	6
D) Delay Time	7
Delta Marker	3, 4
Detection	6, 7
Display Line	2, 3, 4
E) External	7
F) Frequency	1
Full Span	1
G) Gate	7
Gate Delay	7
Gate length	
Gate Setup	7
L) Log Scale	2
M) Marker	3
Marker \rightarrow CF	3, 4
Marker \rightarrow RLV	3, 4
Max Hold	6
Min Hold	6
N) Next Peak	4
Neg Peak	6
Noise Measure	8
Normal Marker	3, 4
O) Occ BW Measure	8
Overwrite	6

Menu	Menu Tree (page/ 9)
P) Peak Search	4
$Peak \rightarrow CF$	1
$Peak \rightarrow RLV$	2
Pos Peak	6
R) RBW	5
Reference Level	1
Ref Level Step Size	2
Resolution	4
Restart	6
S) Sample	6
Span	1
Start Freq	1
Stop Freq	1
Storage	6, 7
Sweep Time	5
Sweep Count	6
T) Threshold	4
Time Span	7
Trace A, B	6, 7
Trace Freq	6
Trace Time	7
Trigger	7
Trigger Slope	7
Trigger Source	7
V) VBW	5
View	6
W) Wide IF Video	7
Z) Zero Span	1
$Zero \rightarrow Span$	3, 4
Zone Width	3

The followiong lists the main keywords used in this operation manual and the number of the pages on which they are used. Use it to search for the soft keys, function descriptions, etc.

[KEYWORDS INDEX]

_

Key Word	Paragraph No.
*Mark	3.1.2
1 div	3.5.1 (1)
A)	
Absolute Value	3.5.7 (1)
A on B	3.8.1 (3)
Abobe Below	3.6.6
Abs	3.5.7 (1)
Active Trace A B	3.8.1.(4)
Adj ch pwr Measure	3.10.1.(4), 3.10.2.(4)
Adjacent Channel Leakage Power	3.10.1.(4), 3.10.2.(4)
All Auto	3.7.1, 3.7.3
Attenuator	3.4.4, 3.7.3
Automatic Calibration	3.7.4
Auto Mode	3.7.1, 3.7.2, 3.7.3
Auto Sweep Time	3.7.1
Aux	3.4
Average	3.8.3, 3.8.4
Average Power	3.10.1 (5)
Averaging count	3.8.5
B)	
Band	3.3.5
Below	3.6.6
Both Channel	3.10.2 (4)
Burst	3.10.2 (3)
Burst Avg Power	3.10.1 (5), 3.10.2 (5)
Burst Synchronizing Signal	3.9.3 (3)
Burst Wave	3.3.4 (2), 3.10.2 (3)

Appendix B Keywords Index

Key Word	Paragraph No.
C)	
C/N Ratio Measure	3.10.1 (2), 3.10.2 (1)
C/N Ratio	3.10.1 (2), 3.10.2 (1)
Cal	3.7.4
Cancel	2.1.1, 3.1.1
Center-Span	3.3.1
CF Step Size	3.3.3
Ch BW	3.10.1 (4), 3.10.2 (4)
Ch Sepa-1	3.10.1 (4), 3.10.2 (4)
Continuous	2.1.1, 3.9.1
Continuous Sweep Mode	3.9.1
Сору	3.1.3
Coupled Function	3.7, 3.10.2 (1)
Cumulative	3.8.4, 3.8.5
Current Marker	3.5.1
D)	
dBc/Hz	3.10.2 (1)
lBm/ch	3.10.2 (2)
Delay Time	3.8.2 (2)
Delta Marker	3.5.3
Detection	3.8.2 (2)
Detection Mode	3.8.2(2), 3.8.8
Digital Video Averaging	3.8.5
Disp Line Level	3.5.7 (1), 3.6.6
Display Line	3.5.7 (1), 3.6.6
Display Absolute Value	3.5.7 (1)
Ξ)	
Entry Area	3.1.1
Execute	3.10.1 (3) (4)
External	3.9.3 (4), 3.10.2 (5)
External Trigger	3.9.3(1)

Key Word	Paragraph No.
F)	
Floppy Disk	2.5, 3.1.3
Free run	3.9.3 (1)
Free run / Trigger	3.9.3 (1)
Frequency	3.1.1
Frequency Domain	3.8.1
Frequency Span	3.3.1 (2), 3.3.4
Full Span	3.3.4 (1)
Function Key	2.1.1, 3.1.2
G)	
Gate Cursor	3.9.6
Gate Control Signal	3.9.5
Gate Delay	3.5.9, 3.9.6
Gate Length	3.5.9, 3.9.6
Gate Setup	3.9.6
Gate Sweep On Off	3.9.5
Gate Trig Source	3.9.6
I)	
Instantaneous signal level	3.8.7
L)	
Level Range	3.4
Log Scale	3.4.2
M)	
Main	3.1.1, 3.4
Main Func	3.1.1
Main Function Key	3.1.1
Manual	3.4.4, 3.7.1
Manual Set	3.7.1, 3.7.2
Marker	3.5, 3.10.2 (1)
Marker Func	3.5
Marker Level Abs Rel	3.5.7 (1)
Marker Mode	3.5
Marker Value	3.5.7

Appendix B Keywords Index

Key Word	Paragraph No.
M)	
Max Hold	3.8.3, 3.8.4
Measure	3.10.1
Measurement Envelop	3.8.7
Measuring Noise Power	3.10.1 (1), 3.10.2 (2)
Measuring Power	3.10.1 (2)
Measuring Occupied Bandwidth	3.10.1 (3)
$Mkr \rightarrow CF$	3.5.4
$Mkr \rightarrow RLV$	3.5.4
N)	
N% of Power	3.10.1 (3), 3.10.2 (3)
Neg Peak	3.8.7, 3.8.8
Next Left Peak	3.6.3
Next Menu	2.1.1, 3.1.2, 3.6.3, 3.10.2 (1
Next Peak	3.6.2
Next Right Peak	3.6.3
Noise Measure	3.10.1 (1), 3.10.2 (2)
Normal	3.8.3, 3.8.4
Normal Marker	3.5.1 (1)
0)	
Occ BW Measure	3.10.1 (3), 3.10.2 (3)
Occupied Frequency Bandwidth	3.10.2 (3)
Overwrite	3.8.3, 3.8.4
P)	
PDC	3.10.2 (3) (5)
Peak Search	3.1.2, 3.6.1
Peak Search Detect	3.6
Peak Signal	3.1.2, 4.6
$\text{Peak} \rightarrow \text{CF}$	3.1.2, 4.6.4
$\text{Peak} \rightarrow \text{RLV}$	3.6.4
PHS	3.10.2 (3) (5)
Pos Peak	3.8.7, 4.8.8
Post-Trigger	3.8.2 (4)
Preset	3.3.4 (1) E

Key Word	Paragraph No.
R)	
RB, VB, SWT Auto	3.7.1
RBW	3.7.1
Ref Level Step Size	3.4.3
Reference Marker	3.5.3
Reference Level Set	3.4.1
Rel	3.5.7 (1)
Resolution dB	3.6.5
Restart	3.8.4, 3.8.5
S)	
Sample	3.8.7, 3.8.8
Sample Point	3.8.7
Search Above Below	3.6.6
Search	3.6
Search Resolution	3.6.5
Search Threshold	3.6.6
Set	2.1.1, 3.1.1
Setting Time Domain	3.8.2 (1)
Setup Common Parameter	3.1.1
Setup	3.10.2 (4)
Single Sweep Mode	3.9.2
Span	3.1.1
Spectrum Analyzer Mode	3.1.1
Spot	3.5.1 (1)
Spot Marker	3.5.1 (1)
Start Freq	3.3.2 (1)
Start Point	3.10.2 (5)
Stop Freq	3.3.2.(2)
Stop Point	3.10.2 (5)
Storage	3.8.4, 3.8.5
Storage Mode	3.8.4, 3.8.5
Sweep Mode	3.9
weep Time	3.7.1

Appendix B Keywords Index

Threshold 3.6.6 Fine Gate Function 3.9.4 Fine Span 3.8.2 (2) (3) Frace A 3.8.1 (1) Frace A on B 3.8.1 (3) Frace B 3.8.1 (2) Frace Memory 3.8.7 Frace Time 3.6.5 Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.8.1 (2) V) V V/ V Wiew 3.7.2 View 3.8.4 Video Filter 3.8.5 V) Source View 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) KÅ 3.9.3 (3) KÅ 3.9.3 (3) KÅ 3.10.2 (3) Z) Zone Marker 3.1.2, 3.5.1 (1) Zone Marker 3.3.4 (2), 3.8.2 (1)	Key Word	Paragraph No.
Fine Gate Function 3.9.4 Fine Span 3.8.2 (2) (3) Frace A 3.8.1 (1) Frace A on B 3.8.1 (3) Frace B 3.8.1 (2) Frace Memory 3.8.7 Frace Time 3.6.5 Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Mode 3.9.3 (1) Frigger Gate 3.9.3 (1) Friggerd A 3.8.2 (2), 3.9.3 (2) V/ V/ VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) Xide IF Video Trigger Xide IF Video Trigger 3.9.3 (3) Xide IF Video Trigger 3.9.3 (3) Xide IF Video Trigger 3.9.3 (3) Xide IF Video Trigger 3.10.2 (3) Zone Marker 3.1.2, 3.5.1 (1) Zone Marker 3.1.2, 3.5.1 (1) Zone Width 3.5.1 (1)	T)	
Fine Span 3.8.2 (2) (3) Irace A 3.8.1 (1) Frace A on B 3.8.1 (3) Irace B 3.8.1 (2) Frace Memory 3.8.7 Frace Time 3.6.5 Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Mode 3.9.3 Frigger Source 3.8.2 (2), 3.9.3 (2) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.9.3 (1) Friggered 3.8.2 (2), 3.9.3 (2) V) V VBW 3.7.2 V/W 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) K) 3.10.2 (3) K) 3.3.4 (2), 3.8.2 (1) Zone Marker <td>Threshold</td> <td>3.6.6</td>	Threshold	3.6.6
Frace A 3.8.1 (1) Frace A on B 3.8.1 (3) Frace B 3.8.1 (2) Frace Memory 3.8.7 Frace Time 3.6.5 Frig Slope 3.9.3 (3) Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Mode 3.9.3 Frigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.8.2 (2), 3.9.3 (2) V) V VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) X Video Filter 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K MB Down Mode 3.10.2 (3) Z) Zone Marker 3.12, 3.5.1 (1) Zone Marker 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Time Gate Function	3.9.4
Frace A on B 3.8.1 (3) Frace B 3.8.1 (2) Frace Memory 3.8.7 Frace Time 3.6.5 Frig Slope 3.9.3 (3) Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Mode 3.9.3 Frigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.8.2 (2), 3.9.3 (2) V) V VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) State Video Filter 3.9.3 (3) Vide IF Video Trigger 3.9.3 (3) K) AdB Down Mode 3.10.2 (3) Z) Zone Marker 3.12, 3.5.1 (1) Zone Marker 3.14 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Time Span	3.8.2 (2) (3)
Frace B 3.8.1 (2) Frace Memory 3.8.7 Frace Time 3.6.5 Frig Slope 3.9.3 (3) Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Mode 3.9.3 Frigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.8.2 (2), 3.9.3 (2) V/ V VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) KV 3.10.2 (3) Z) Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Trace A	3.8.1 (1)
Frace Memory 3.8.7 Frace Time 3.6.5 Frig Slope 3.9.3 (3) Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Mode 3.9.3 Frigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.9.3 (1) Friggered 3.8.2 (2), 3.9.3 (2) V) V VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) Xide IF Video Trigger 3.10.2 (3) Z) Zone Marker 3.1.2, 3.5.1 (1) Zone Marker 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Trace A on B	3.8.1 (3)
Frace Time 3.6.5 Frig Slope 3.9.3 (3) Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Mode 3.9.3 Trigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.8.2 (2), 3.9.3 (2) V) V VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K 3.10.2 (3) Z) Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Trace B	3.8.1 (2)
Frig Slope 3.9.3 (3) Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Mode 3.9.3 Frigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.9.3 (2) V) 3.8.2 (2), 3.9.3 (2) V) V VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) X) X dB Down Mode 3.10.2 (3) Z) Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Trace Memory	3.8.7
Frigger Freerun 3.8.2 (2), 3.9.3 (2) Frigger Mode 3.9.3 Frigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.9.3 (1) Frigger/Gate 3.9.3 (2) V/ X VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) X Wide IF Video Trigger 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K AB Down Mode 3.10.2 (3) Z) Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Trace Time	3.6.5
Frigger Mode 3.9.3 Frigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Triggered 3.8.2 (2), 3.9.3 (2) V)	Trig Slope	3.9.3 (3)
Frigger Source 3.8.2 (2), 3.9.3 (3) Frigger/Gate 3.9.3 (1) Friggered 3.8.2 (2), 3.9.3 (2) V)	Trigger Freerun	3.8.2 (2), 3.9.3 (2)
Frigger/Gate 3.9.3 (1) Friggered 3.8.2 (2), 3.9.3 (2) V) 3.8.2 (2), 3.9.3 (2) VI 3.8.2 (2), 3.9.3 (2) VIW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) X) 3.10.2 (3) X) 3.10.2 (3) Z) Zone Marker 3.1.2, 3.5.1 (1) 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Trigger Mode	3.9.3
Triggered 3.8.2 (2), 3.9.3 (2) V) 3.8.2 (2), 3.9.3 (2) VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K) 3.10.2 (3) Z) 20 Zone Marker 3.1.2, 3.5.1 (1) Zone Width 3.5.1 (1)	Trigger Source	3.8.2 (2), 3.9.3 (3)
V) 3.7.2 View 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K) 3.10.2 (3) Z) 20 Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Trigger/Gate	3.9.3 (1)
VBW 3.7.2 View 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K) 3.10.2 (3) Z) 3.10.2 (3) Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Triggered	3.8.2 (2), 3.9.3 (2)
View 3.8.4 Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K) 3.9.3 (3) K) 3.10.2 (3) Z) 3.10.2 (3) Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	V)	
Video Filter 3.8.5 W) 3.9.3 (3) Wide IF Video 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K) 3.9.3 (3) K) 3.10.2 (3) Z) 3.10.2 (3) Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	VBW	3.7.2
W) 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K) 3.9.3 (3) K) 3.10.2 (3) Z) 3.10.2 (3) Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	View	3.8.4
Wide IF Video 3.9.3 (3) Wide IF Video Trigger 3.9.3 (3) K) 3.9.3 (3) K) 3.10.2 (3) Z) 3.10.2 (3) Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Video Filter	3.8.5
Wide IF Video Trigger 3.9.3 (3) X) 3.10.2 (3) X) 3.10.2 (3) Z) 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	W)	
X) 3.10.2 (3) X) 3.10.2 (3) Z) 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Wide IF Video	3.9.3 (3)
X dB Down Mode 3.10.2 (3) Z) 3.1.2, 3.5.1 (1) Zone Marker 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Wide IF Video Trigger	3.9.3 (3)
Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	X)	
Zone Marker 3.1.2, 3.5.1 (1) Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	X dB Down Mode	3.10.2 (3)
Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Z)	
Zero Span 3.3.4 (2), 3.8.2 (1) Zone Width 3.5.1 (1)	Zone Marker	3.1.2, 3.5.1 (1)
Zone Width 3.5.1 (1)	Zero Span	
	Zone Width	
	$Zone \rightarrow Span$	

MT8801C

Radio Communication Analyzer

Option 07: Spectrum Analyzer Operation Manual (Remo Operation)

Table of Contents

Section 1 Device Messages	1-1
1.1 Device Message List	1-2

Section 2 Detailed Description of Commands

Section 3	Sample Programs	3-1
-----------	-----------------	-----

2-1

3.1	Precautions on Creating the Remote Control Program	3-2
3.2	Sample Programs	3-3
3.3	Precautions on Creating the GPIB Program	3-18
3.4	Sample Program (GPIB)	3-19

Appendixes	App-1
Appendix A Table of Spectrum Analyzer Device-dependent	
Initial Settings	A-1

This section outlines and lists the device messages of the MT8801C Option 07.

1.1	Device	e Message List	1-2
	1.1.1	MT8801C common commands in Spectrum	
		Analyzer	1-4
	1.1.2	Spectrum Analyzer Command	1-5

MT8801C-specific Option 07 program commands, query messages, and response messages are listed from paragraph 1.1.1.

Device message table

(a) Program messages (Program Msg)/query message (Query Msg)

(i)	Uppercase characters	:	Reserved words
(ii)	Numeric	:	Reserved words (numeric code)
(iii)	Lowercase characters in argument		

		f (frequency)	:	Real number or integer with decimal point
			Units	: GHZ, MHZ, KHZ, HZ, GZ, MZ, KZ, no units = HZ
		t (time)	:	Real number or integer with decimal point
			Units	: S, SC, MS, US, no unit = US
		Q(level)	:	Real number or integer with decimal point
			Units	: DB, DBM, DM, DBU, W, MW, UW, NW, no units =
				set SCALE units
		n (no units integer)	:	Integer
		r (no units real number)	:	Real number
		h (no units hexadecimal number)	:	Hexadecimal number
		Others	:	Listed in remarks columns of the table
(b) Respor	ise me	ssages (Response Msg)		
	(i)	Uppercase characters	:	Reserved words
	(ii)	Numeric	:	Reserved words (numeric code)
	(iii)	Lowercase characters in argument		
		f (frequency)	:	12-character fixed integerunits = HZ
		t (time)	:	Real number or integer with decimal point
		Q (level)	:	Real number or integer with decimal point
		u (ratio)	:	Real number or integer with decimal point
		s (symbol)	:	Real number or integer with decimal point
		n (no units integer)	:	Integer, variable number of digits (Significant digits are
				output.)
		r (no units real number)	:	Real number with decimal point, variable number of
				digits (Significant digits are output.)
		h (no units hexadecimal number)	:	Hexadecimal number
		Others	:	Written in remarks columns of the table

Notes:

- Integer: NR1 format, real number: NR2 format
- 0/: Zero

Device messages are classified into 7 types according to their valid ranges:

- 1. MT8801C common commands : Valid in all MT8801C modes (except for Spectrum Analyzer)
- 2. Instrument Setup command : Valid in Instrument Setup panel mode
- 3. TX/RX tester commands : Valid in TX/RX tester panel mode (on all TX/RX test screens)
- 4. Setup command parameter command : Valid on the Setup common parameter screen
- 5. TX tester commands : Valid in a range defined on each TX test screen
- 6. RX tester commands : Valid in a range defined on each RX test screen
- 7. Spectrum Analyzer commands :

Valid in a range defined on each Spectrum Analyzer screen

These device messages are listed below in Spectrum Analyzer.

1.1.1 MT8801C common commands in Spectrum Analyzer

(1) Copy commands (copy)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	Сору		PRINT			
			PLS Ø			

(2) Preset commands (initialization, power-on setting)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	Preset		PRE			
			INI			
			IP			

(3) Panel-mode switching commands (TX/RX tester mode, Instrument Setup mode)

Intermediate class	Function	Function details	Program Msg	Query Msg	Response Msg	Remarks
	TX/RX tester		PNLMD ANALOG	PNLMD?	TESTER	
	Instrument setup	PNLMD SYSTEM	PNLMD?	SYSTEM		
	Spectrum analyzer	PNLMD SPECT	PNLMD?	SPECT		

1.1.2 Spectrum Analyzer Command

Table of Device Messages (1/14)

F	Parameter	Program	0	During
Outline	Control item	command	Query	Response
Frequency/ <u>Amplitude</u>	FREQUENCY/ AMPLITUDE			
• Frequency	FREQUENCY			
Selects the mode for setting the frequency band.	FREQ MODE CENTER-SPAN START-STOP	FRQƯ FRQ∆2	FRQ? FRQ?	FRQƯ FRQ∆2
Sets the center frequency.	CENTER FREQ	CF∆f	CF?	f
Steps up the center frequency.	FREQ STEP UP	CF△UP		
Steps down the center frequency.	FREQ STEP DOWN	CF△DN		
Sets the start frequency.	START FREQ	FA△f	FA?	f
Sets the stop frequency.	STOP FREQ	FB△f	FB?	f
Sets the frequency step size.	FREQ STEP SIZE	SS∆f	SS?	f
<u>• Span</u>	<u>SPAN</u>			
Sets the frequency span.	FREQ SPAN	SP∆f	SP?	f
Steps up the frequency span.	FREQ SPAN STEP UP	SP∆UP		
Steps down the frequency span.	FREQ SPAN STEP DOWN	SP△DN		
Sets to full span.	FULL SPAN	FS		
Sets to zero span. Select the band	ZERO SPAN	SPƯ		
	BAND SELECT 0: 0 Hz to 3.0 GHz 1: 10 MHz to 3.0 GHz	BNDCƯ BNDC∆1	BNDC? BNDC?	Ø 1

Note: \triangle is a space.

Table of Device Messages (2/14)						
F	Parameter	Program	Query	Pooponoo		
Outline	Control item	command	Query	Response		
Frequency/ <u>Amplitude</u>	FREQUENCY/ AMPLITUDE					
<u>• Level</u>	AMPLITUDE					
Sets the reference level.	REFERENCE LEVEL	RL∆l	RL?	1		
Steps up the reference level.	REF LEVEL STEP UP	RL∆UP				
Steps down the reference level.	REF LEVEL STEP DOWN	RL riangle DN				
Sets the LOG scale step size.	LOG SCALE STEP SIZE MANUAL AUTO	LSS△l	LSS?	LSS△l		
	1 div 2 div 5 div 10 div	LSSA△1 LSSA△2 LSSA△5 LSSA△1Ø	LSSA? LSSA? LSSA? LSSA?	LSSA \triangle 1 LSSA \triangle 2 LSSA \triangle 5 LSSA \triangle 1Ø		
Sets the LOG scale.	LOG SCALE RANGE 1 dB/div 2 dB/div 5 dB/div 10 dB/div	$LG \triangle 1DB$ $LG \triangle 2DB$ $LG \triangle 5DB$ $LG \triangle 1ØDB$	LG? LG? LG? LG?	1 2 5 1Ø		
	SCALE UP SCALE DOWN	LG△UP LG△DN				
• Display line	DISPLAY LINE					
Sets the Display line ON/OFF.	DISPLAY LINE OFF ON	DL△OFF DL△ON	DL?	OFF		
Sets the Display line level.	DISPLAY LINE LEVEL	DL△l	DL?	1		
Marker level/ waveform data Absolute/relative display line.	TRACE-A ABS REL TRACE-B ABS REL TRACE-TIME ABS REL	DSPLVM △ TRA, ABS DSPLVM △ TRA, REL DSPLVM △ TRB, ABS DSPLVM △ TRB, REL DSPLVM △ TRTIME, ABS DSPLVM △ TRTIME, REL		ABS REL ABS REL ABS REL		

Table of Device Messages (3/14	1)
--------------------------------	----

F	Parameter	Program	0	Deenenee
Outline	Control item	command	Query	Response
■ Display function	<u>DISPLAY</u>			
• Display mode	DISPLAY FUNCTION			
Selects the display format.	DISPLAY FORMAT TRACE-A TRACE-B TRACE-TIME TRACE-A/B (A&B)	DFMT△A DFMT△B DFMT△TIME DFMT△AB1	DFMT? DFMT? DFMT? DFMT?	A B TIME AB1
• Waveform writing	WRITE SWITCH			
Controls writing of the waveform to trace A.	TRACE-A WRITE SWITCH VEIW WRITE	AWR $\bigtriangleup \emptyset$ AWR $\bigtriangleup OFF$ VIEW \bigtriangleup TRA AWR $\bigtriangleup 1$ AWR $\bigtriangleup ON$ CLRW \bigtriangleup TRA	AWR?	AWR OFF
Controls writing of the waveform to trace B.	TRACE-B WRITE SWITCH			
Controls writing of the waveform to trace	VIEW WRITE	$\begin{array}{c} {\tt BWR} \bigtriangleup \emptyset \\ {\tt BWR} \bigtriangleup {\tt OFF} \\ {\tt VIEW} \bigtriangleup {\tt TRB} \\ {\tt BWR} \bigtriangleup 1 \\ {\tt BWR} \bigtriangleup {\tt ON} \\ {\tt CLRW} \bigtriangleup {\tt TRB} \end{array}$	BWR? BWR?	 BWR△OFF BWR△ON
TIME.	TRACE-TIME WRITE SWITCH VIEW WRITE	TMWR $\triangle Ø$ TMWR $\triangle OFF$ VIEW \triangle TRTIME TMWR $\triangle 1$ TMWR $\triangle ON$	 TMWR? TMWR?	 TMWR△OFF TMWR△ON

	Table of	Device Messages (4	/14)	
F	Parameter	Program	Query	Response
Outline	Control item	command	Query	nesponse
■ Display function	DISPLAY			
 Storage mode 	STORAGE MODE			
Selects the mode for processing the trace A waveform.	TRACE MODE (A) NORMAL MAX HOLD AVERAGE MIN HOLD CUMULATIVE OVER WRITE	$AMD \triangle \emptyset$ $AMD \triangle 1$ $MXMH \triangle TRA$ $AMD \triangle 2$ $AMD \triangle 3$ $AMD \triangle 4$ $AMD \triangle 5$	AMD? AMD? AMD? AMD? AMD? AMD?	$AMD \triangle \emptyset$ $AMD \triangle 1$ $$ $AMD \triangle 2$ $AMD \triangle 3$ $AMD \triangle 4$ $AMD \triangle 5$
Selects the mode for processing the trace B waveform.	TRACE MODE (B) NORMAL MAX HOLD AVERAGE MIN HOLD CUMULATIVE OVER WRITE	$BMD \triangle \emptyset$ $BMD \triangle 1$ $MXMH \triangle TRB$ $BMD \triangle 2$ $BMD \triangle 3$ $BMD \triangle 4$ $BMD \triangle 5$	BMD? BMD? BMD? BMD? BMD? BMD?	BMD△Ø BMD△1 ——— BMD△2 BMD△3 BMD△4 BMD△5
Selects the mode for processing the trace TIME waveform.	TRACE MODE (TIME) NORMAL MAX HOLD AVERAGE MIN HOLD CUMULATIVE OVER WRITE	$\begin{array}{c} TMMD \bigtriangleup \emptyset \\ TMMD \bigtriangleup 1 \\ TMMD \bigtriangleup 2 \\ TMMD \bigtriangleup 3 \\ TMMD \bigtriangleup 4 \\ TMMD \bigtriangleup 5 \end{array}$	TMMD? TMMD? TMMD? TMMD? TMMD? TMMD?	$\begin{array}{c} TMMD \bigtriangleup \emptyset \\ TMMD \bigtriangleup 1 \\ TMMD \bigtriangleup 2 \\ TMMD \bigtriangleup 3 \\ TMMD \bigtriangleup 4 \\ TMMD \bigtriangleup 5 \end{array}$
Average processing.	AVERAGE OFF ON	VAVG△Ø VAVG△OFF VAVG△1 VAVG△ON		
Number of trace averaged.	NUMBER of TRACE AVERAGE n	VAVG∆n	VAVG?	n
Hold sweep mode pause.	HOLD SWEEP MODE PAUSE (Specifies number)	HOLDPAUSE△n	HOLDPAUSE?	n

Table of Device Messages (5/14)						
F	Parameter	Program	Query	Response		
Outline	Control item	command				
Display function	DISPLAY					
• Storage mode (Cont)	STORAGE MODE					
Selects detection mode.	TRACE-A DETECTION MODE POS PEAK SAMPLE NEG PEAK	DETM△TRA, POS DETM△TRA, SMP DETM△TRA, NEG	DETM? △TRA DETM? △TRA DETM? △TRA	POS SMP NEG		
	TRACE-B DETECTION MODE POS PEAK SAMPLE NEG PEAK	DETM△TRB, POS DETM△TRB, SMP DETM△TRB, NEG	DETM? △TRB DETM? △TRB DETM? △TRB	POS SMP NEG		
	TRACE-TIME DETECTION MODE POS PEAK SAMPLE NEG PEAK	DETM △ TRTIME, POS DETM △ TRTIME, SMP DETM △ TRTIME, NEG	DETM? △ TRTIME DETM? △ TRTIME DETM? △ TRTIME	POS SMP NEG		
<u>• Time</u>	TIME					
Sets the time delay in the time axis sweep mode.	DELAY TIME	TDLY∆t	TDLY?	t		
Sets the time span in the time axis sweep mode.	TIME SPAN	TSP∆t	TSP?	t		
<u>• A/B</u>						
Active marker Trace.	ACTIVE MARKER TRACE TRACE A TRACE B	MKTRACE△TRA MKTRACE△TRB				
■ Signal search	SIGNAL SEARCH					
Sets the maximum peak point to the center frequency.	PEAK to CF	PCF				
Sets the maximum peak point to the REF level.	PEAK to REF	PRL				

Table of Device Messages (5/14)

Table of Device Messages (6/14)					
	Parameter	Program	Query	Boopenee	
Outline	Control item	command	Query	Response	
Marker function	MARKER				
DELTA OFF		MKR△Ø MKR△1 MKD MKR△2 MKOFF MKOFF△ALL	MKR? MKR? MKR?	MKR △Ø MKR △ 1 MKR △ 2 	
Specifies the zone marker center position as a point.	ZONE POSITION (point)	МКР∆р	MKP?	q	
Specifies the zone marker center position as a frequency or time.	ZONE POSITION (freq or time) FREQ SET UP DOWN TIME SET UP DOWN	MKN△f MKN△UP MKN△DN MKN△t MKN△UP MKN△DN	MKN? MKN?	f t	
Specifies the zone marker width as a frequency.	ZONE WIDTH (freq)	MZWF△f	MZWF?	f	
Specifies the zone marker width as a division.	ZONE WIDTH (div) SPOT 0.5 div 1 div 2 div 5 div 10 div	MKW△1 MKW∅ MKW△5 MKW△6 MKW△7 MKW△2	MKW? MKW? MKW? MKW? MKW? MKW?	MKW △ 1 MKW △ Ø MKW △ 5 MKW △ 6 MKW △ 7 MKW △ 2	

F	Parameter	Program	Query	Response	
Outline	Control item	command			
Marker function (Cont)	MARKER				
• Multimarker	MARKER FUNCTION				
Moves the marker frequency to the center frequency.	MKR to CF	MKR∆3 MKCF			
Sets the level at the marker point to the REF level.	MKR to REF	MKR∆4 MKRL			
Sets the zone frequency to the span.	ZONE to SPAN	MKR△7			
• Peak search	PEAK SEARCH				
Peak search mode	PEAK SEARCH MODE PEAK NEXT PEAK NEXT RIGHT PEAK NEXT LEFT PEAK	MKPK MKPK△HI MKPK△NH MKPK△NR MKPK△NL			
	SEARCH RESOLUTION	MKPXAl	MKPX?	1	
	SEARCH THRESHOLD OFF ON	SRCHTH△Ø SRCHTH△OFF SRCHTH△1 SRCHTH△ON	SRCHTH?	OFF 	
Search resolution	ABOVE	SRCHTHABOVE	SRCHTH?	ABOVE	
Search threshold value	BELOW	SRCHTH_BELOW	SRCHTH?	BELOW	

Table of Device Messages (7/14)

Table of Device Messages (8/14)					
Parameter		Program	Query	Response	
Outline	Control item	command		перринае	
Marker function	MARKER				
 Input position 	INPUT POSITION				
Reads the reference marker position.	REFERENCE MARKER POSITION		RMK?	RMK∆p	
Reads the current marker position.	CURRENT MARKER POSITION		CMK?	СМК∆р	
Reads the frequency at the marker point.	MARKER FREQ QUERY FREQ TIME		MKF? MKF?	f t	
Reads the level at the marker point.	MARKER LEVEL		MKL?	1	
<u>■ Coupled</u> <u>function</u>					
Sets the resolution bandwidth.	RESOLUTION BANDWIDTH AUTO 300 Hz 1 kHz 3 kHz	RB△AUTO RB△3ØØHZ RB△1KHZ RB△3KHZ	RB? RB? RB? RB?	300 1000 3000	
10 kHz 30 kHz 100 kHz 300 kHz 1 MHz		RB△1ØKHZ RB△3ØKHZ RB△1ØØKHZ RB△3ØØKHZ RB△1MHZ	RB? RB? RB? RB? RB? RB?	10000 30000 100000 300000 1000000	
	RBW UP RBW DOWN	RB△UP RB△DN	<u> </u>		

Table of Device Messages (8/14)

Table of Device Messages (9/14)					
F	Parameter	Program	Query	Response	
Outline	Control item	command	Quory		
Coupled function (Cont)	COUPLED FUNCTION				
Sets the video bandwidth.	VIDEO BANDWIDTH AUTO	VBAUTO			
	3 Hz 10 Hz 30 Hz 100 Hz 300 Hz 1 kHz 3 kHz 10 kHz 30 kHz 100 kHz OFF VBW UP VBW DOWN	$VB \triangle 3 \emptyset HZ$ $VB \triangle 1 \emptyset HZ$ $VB \triangle 3 \emptyset HZ$ $VB \triangle 1 \emptyset \emptyset HZ$ $VB \triangle 3 \emptyset \emptyset HZ$ $VB \triangle 3 \emptyset HZ$ $VB \triangle 1 KHZ$ $VB \triangle 1 \emptyset KHZ$ $VB \triangle 3 \emptyset KHZ$ $VB \triangle 1 \emptyset \emptyset KHZ$ $VB \triangle 0 FF$ $VB \triangle UP$ $VB \triangle DN$	VB? VB? VB? VB? VB? VB? VB? VB? VB? VB?	3 10 30 100 300 1000 3000 10000 30000 100000 OFF	
Sets the sweep time.	SWEEP TIME AUTO	STØAUTO			
	SWEEP△TIME SET TIME=t UP DOWN	ST∆t ST∆UP ST∆DN	ST?	t	
Sets the RF attenuator.	RF ATTENUATOR AUTO	ATAUTO			
	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB UP DOWN	ATØ AT \triangle 1Ø AT \triangle 2Ø AT \triangle 3Ø AT \triangle 4Ø AT \triangle 5Ø AT \triangle 6Ø AT \triangle 7Ø AT \triangle UP AT \triangle DN	AT? AT? AT? AT? AT? AT? AT? AT?	Ø 1Ø 2Ø 3Ø 4Ø 5Ø 6Ø 7Ø	
Sets the bandwidth/sweep time automatically.	RBW,VBW/SWEEP TIME,AUTO	BSAUTO		<u> </u>	
Sets the coupled function automatically.	COUPLED FUNCTION AUTO	AUTO			

Table of Device Messages (9/14)

Table of Device Messages (10/14)					
F	Parameter	Program	Query	Pospansa	
Outline	Control item	command	Query	Response	
Sweep function	SWEEP CONTROL				
Sets the sweep mode to single.	SINGLE SWEEP MODE	SNGLS			
Executes/checks single sweep.	SINGLE SWEEP/ SWEEP STATUS Executing single sweep Checking the sweep status Sweep completed Sweep in progress	SWP 	SWP? SWP?	 SWPƯ SWP∆1	
Executes average sweep.	TAKE AVERAGE SWEEP	TSAVG			
Executes hold sweep.	TAKE HOLD SWEEP	TSHOLD			
Continuous sweep mode.	COTINUOUS SWEEP MODE	CONTS			
Restarts the sweep.	SWEEP RESTART	SWSTART			
Measure function	MEASURE				
Sets the measure function to OFF.	MEASURE FUNCTION ALL OFF	MEAS△OFF			
• Noise measurement	NOISE MEASURE				
Measures the noise.	NOISE MEASURE OFF ON ABSOLUTE executed C/N RATIO executed	MEAS △ NOISE, OFF MEAS △ NOISE, ON MEAS △ NOISE, ABS MEAS △ NOISE, CN		 1	
Calculation method.	ABSOLUTE C/N RATIO	$\begin{array}{c} \texttt{MNOISE} \triangle \texttt{ABS} \\ \texttt{MNOISE} \triangle \texttt{CN} \end{array}$	MNOISE? MNOISE?	ABS CN	

Table of Device Messages (11/14)					
F	Parameter	Program	Query	Response	
Outline	Dutline Control item comma				
Measure function (Cont)	MEASURE				
Occupied frequency bandwidth measurement Measures the occupied frequency bandwidth. Calculation method Sets the conditions of occupied frequency bandwidth.	OBW MEASURE OBW MEASURE Executes calculation. Executes (X dB DOWN). Executes (N%). Transferring measured results (f1: Occupied bandwidth f2: Center frequency) X dB DOWN method	MEAS △ OBW, EXE MEAS △ OBW, XDB MEAS △ OBW, N ——— MOBW △ XDB MOBW △ N	MOBW?	 f1,f2 XDB	
	N% method OBW VALUE x dB n%		MOBW? OBWXDB? OBWN?	N x n	
• Adjacent channel measurement	ADJACENT CH MEASURE				
Measures the adjacent channel.	ADJACENT CH MEASURE Executes calculation. Executes (UNMODULATED CARRIER). Executes(MODULATED CARRIER) Transferring measured results (lL1: CH1 lower sideband lu1: CH1 upper sideband lu2: CH2 upper sideband)	MEAS △ ADJ , EXE MEAS △ ADJ , UNMD MEAS △ ADJ , MOD	 RES?	 lL1,lU1, lL2,lU2	
Selects the adjacent channel.	ADJACENT CH SELECT BOTH SIDES UPPER SIDE LOWER SIDE OFF ADJACENT CH	ADJCH△BOTH ADJCH△UP ADJCH△LOW ADJCH△OFF ADJCHBW△f	ADJCH? ADJCH? ADJCH? ADJCH? ADJCHBW?	BOTH UP LOW OFF	
channel bandwidth.	BANDWIDTH		ADUCIIDW:		

Table of Device Messages (11/14)

Table of Device Messages (12/14)

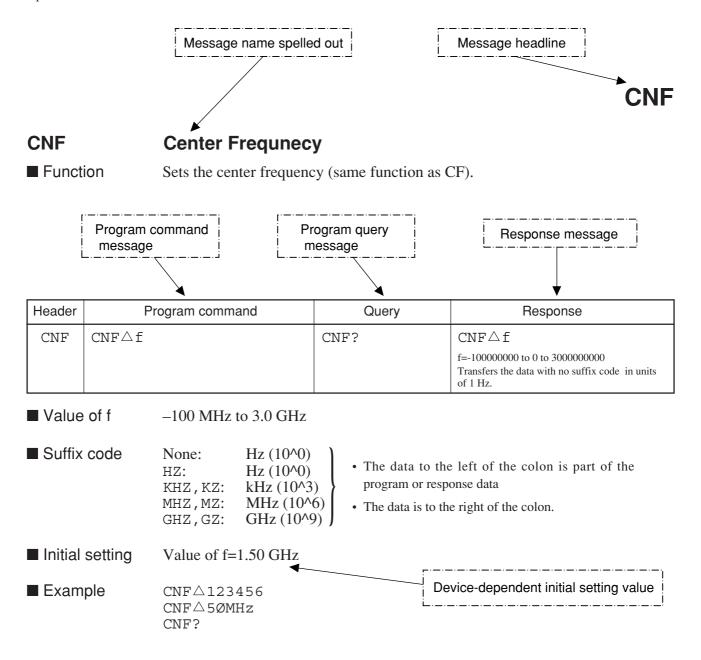
F	Parameter	Program	Querry	Reenenee
Outline	Control item	command	Query	Response
Measure function (Cont) • Adjacent channel measurement	MEASURE ADJACENT CH MEASURE			
Sets adjacent channel 1 separation.	ADJACENT CH1 SEPARATION	ADJCHSP△f	ADJCHSP?	f
Sets adjacent channel 2 separation.	ADJACENT CH2 SEPARATION	ADJCHSPF△f	ADJCHSPF?	f
Selects the calculation method.	R:TOTAL POWER (MOD) R:REF LEVEL (UNMOD)	MADJMOD \triangle MOD MADJMOD \triangle UNMD	MADJMOD? MADJMOD?	MOD UNMD
Sets the graph display ON/OFF.	GRAPH OFF ON	MADJGRAPH△OFF MADJGRAPH△ON	MADJGRAPH? MADJGRAPH?	OFF ON
Sets the channel center line display ON/OFF.	CHANNEL CENTER LINE OFF ON	MADJCTRLN△OFF MADJCTRLN△ON	MADJCTRLN? MADJCTRLN?	OFF ON
Sets the channel range line display ON/OFF.	CHANNEL BAND LINE OFF ON	MADJBWLN△OFF MADJBWLN△ON	MADJBWLN? MADJBWLN?	OFF ON
• Power measurement	POWER MEASURE			
Measures the power.	POWER MEASURE MEASURE Transferring measured results (l:dBm value w: pW value)	MEAS △ POWER, EXE	RES?	 l,w
Sets the point where power measurement starts.	POWER MEASURE START	PWRSTART $ riangle$ p	PWRSTART?	р
Sets the point where power measurement ends.	POWER MEASURE STOP	PWRSTOP△p	PWRSTOP?	p

Table of Device Messages (15/14)					
F	Parameter	Program	Query	Response	
Outline	Outline Control item		Query	nesponse	
■ Calibration	CALIBRATION				
Executes calibration with the internal CAL signal.	CALIBRATION	CAL			
CAL/UNCAL	CAL/UNCAL				
Couple failure	UNCAL UNCAL DISPLAY OFF ON	$UNC riangle \emptyset$ UNC riangle OFF UNC riangle 1 UNC riangle ON	UNC? UNC?	 UNC△OFF UNC△ON	
	UNCAL STATUS NORMAL UNCAL		UCL? UCL?	UCLƯ UCL∆1	
Spectrum data	SPECTRUM DATA				
Trace A memory	TRACE-A MEMORY	XMA∆p,b	XMA? \triangle p,b	b	
Trace B memory	TRACE-B MEMORY	XMB∆p,b	XMB?∆p,b	b	
Trace TIME memory Selects ASCII/ Binary.	TRACE-TIME MEMORY	XMT∆p,b	XMT?∆p,b	b	
	ASCII DATA BINARY DATA	BIN△Ø BIN△OFF BIN△1	<u> </u>		
	DINAKI DATA	BINAON			

Table of Device Messages (13/14)

Table of Device Messages (14/14)					
F	Parameter	Program	0	Deserves	
Outline	Outline Control item		Query	Response	
Trigger/gate sweep	TRIGGER/GATE SWEEP				
Gate function	GATE MODE OFF ON	$GATE \triangle \emptyset$ $GATE \triangle OFF$ $GATE \triangle 1$ $GATE \triangle ON$	GATE? GATE?	OFF ON	
Sets the gate delay time.	GATE DELAY TIME	GD∆t	GD?	t	
Sets the gate length.	GATE LENGTH	GL∆t	GL?	t	
Sets the trigger mode (sets the trigger source/ trigger switch).	e trigger source/ FREERUN $TRG \triangle \emptyset$ switch). TM \triangle FRE EXT TM \triangle FRE WIDE IF VIDEO TM \triangle WID		TRG? TM? TM? TM?	TRG△Ø FREE EXT WIDEVID	
Sets the trigger switch.	EXTERNAL TRIGGER SWITCH FREERUN TRIGGERD	TM△EXT TRGS△FREE TRGS△TRGD	TM? TRGS? TRGS?	EXT FREE TRGD	
Sets the trigger source.	Sets the trigger		TRGSOURCE? TRGSOURCE? TRGSOURCE?	EXT WIDEVID EXT	
Selects the sweep trigger slope.	TRIGGER SLOPE RISE FALL	TRGSLP△RISE TRGSLP△FALL	TRGSLP? TRGSLP?	RISE FALL	
Sets the time-out period for the trigger sweep wait (this is also the time-out period of the GP-IB talker function).	SWEEP TIME OUT	GTOUT∆t	GTOUT?	t	

This section describes the Option 07 usable device and response messages in alphabetic order.


ADJCH	2-4
ADJCHBW	2-4
ADJCHSPF	2-5
ADJCHSP	2-5
AMD	2-6
AT	2-6
AUTO	2-7
AWR	2-7
BIN	2-8
BMD	2-8
BNDC	2-9
BSAUTO	2-9
BWR	2-10
CAL	2-11
CF	2-11
CLRW	
СМК?	
CONTS	
DETM	
DL	
DFMT	
DSPLVM	
FA	
FB	
FS	
FRQ	
GATE	
GD	
HOLDPAUSE	
LG	
LSS	
LSSA	
MADJBWLN	
MADJCTRLN	
MADJGRAPH	
MADJMOD	
MEAS	2-26
MKCF	2-27
MKD	2-27
MKL?	2-28
MKF?	2-28
MKN	2-29
MKOFF	2-30

2-1

Section 2 Detailed Description of Commands

MKP	
MKPK	-
MKPX	
MKR	2-32
MKRL	2-32
MKW	2-33
MKTRACE	2-33
MNOISE	2-34
MOBW	2-34
MZWF	2-35
MXMH	2-35
OBWN	2-36
OBWXDB	2-36
PCF	2-37
PRL	2-37
PWRSTART	2-38
PWRSTOP	
RB	
RES?	
RL	
RMK?	
SNGLS	
SP	
SRCHTH	
SS	
ST	
SWP	
SWP	
TM	
TDLY	
TMWR	- 17
TMMD	
TRGS	-
TRGSLP	
TRGSOURCE	
TSAVG	
TSP	
TSHOLD	
UCL?	2-51
UNC	2-51
VAVG	2-52
VB	2-52
VIEW	2-53
XMB	2-54
XMA	2-54
XMT	2-55

This section gives detailed descriptions of the device messages for the MT8801C Option 07 spectrum analyzer function in alphabetical order.

ADJCH

Adjacent CH Select ADJCH

 $ADJCH \triangle BOTH$ $ADJCH \triangle LOW$

Function Selects the subject channel to be calculated for an adjacent channel.

Header	Program command		Query	Response	
ADJCH	ADJCH∆a		ADJCH?	a	
■ Value	of a	BOTH: UP: LOW: OFF:	BOTHSIDE UPPERSIDI LOWERSID	E	
SuffixInitialExam	setting	None BOTH: ADJCH△	BOTHSIDE BOTH	S	

ADJCHBW

Adjacent CH Bandwidth **ADJCHBW**

Function Sets the bandwidth of the adjacent channel.

Header	Program command	Query	Response
ADJCHBW	ADJCHBW∆f	ADJCHBW?	f f=10 to 9999990
			Transfers the data with no suffix code in units of 1 Hz.
 ■ Value of f ■ Suffix cod 	e None: Hz (10 ^A C HZ: Hz (10 ^A C KHZ, KZ: kHz (10 ^A MHZ, MZ: MHz (10 ^A)))) \^3) \^6)	Data below 10 Hz is truncated.)
 Initial setti Example 	GHZ,GZ: GHz (10 8.5KHZ: 8.5 kHz ADJCHBW△8.5KHZ	/9)	

ADJCHSP

ADJCHSP Adjacent CH Sepalation

Function Sets the separation of adjacent channel 1.

Header	Program command	Query	Response
ADJCHSP	ADJCHSP∆f	ADJCHSP?	f f=10 to 9999990 Transfers the data with no suffix code in units of 1 Hz.
 Value of f Suffix code)) 3) ^6)	Data below 10 Hz is truncated.)
 Initial setti Example 		, ,	

ADJCHSPF

ADJCHSPF Adjacent CH2 Separation

Function Sets the separation of adjacent channel 2.

Header	Program command	Query	Response
ADJCHSP	$ADJCHSPF \triangle f$	ADJCHSPF?	f
			f=10 to 9999990
			Transfers the data with no suffix code in units
			of 1 Hz.

Value of f	10 Hz to 9.9	09999 MHz (10 Hz resolution. Data below 10 Hz is truncated.)
Suffix code	None:	Hz (10^0)
	HZ:	Hz (10^0)
	•	kHz (10^3)
	•	MHz (10^6)
	GHZ,GZ:	GHz (10^9)
Initial setting	12.5KHZ:	12.5 kHz
Example	ADJCHSPF	△12.5kHz

AMD

AMD Trace A Storage Mode

Function Selects the mode for processing the trace A waveform.

Header	Pr	rogram command	Query	Response
AMD	AMD∆n		AMD	AMD∆n
 Value Suffix Initial Exam 	code setting	Ø: NORMAL 1: MAXHOLD 2: AVERAGE 3: MINHOLD 4: CUMULATIVE 5: OVERWRITE None Ø: NORMAL AMD△Ø	<u> </u>	

AT

AT

RF Attenuator

Function Sets the RF attenuator.

Header	Program command			Query	Response
AT	AT∆a			AT?	n
	AT∆n				
■ Suffix code None: dB DB : dB			UP DOWN (1Østep) dB dB	: 0 to 70 dB (10 dB	
 Initial setting ATT=Calculated value v AT△1∅ AT△5∅ 			lated value	when AUTO is select	ed for ATT

AUTO

AUTO Coupled Function All Auto

Function Executes all coupled functions (RBW, VBW, SWT, and ATT) in AUTO mode.

Header	Program command	Query	Response
AUTO	AUTO		

Example

AUTO

AWR

AWR Trace A Write Switch

Function Controls writing of the waveform data to trace A.

Header	Program command			Query	Response	
AWR	$AWR \triangle sw$		a=ON,1,OFF,0	AWR?	$AWR \triangle sw$	sw=ON,OFF
		1,ON: Ø,OFF:			unction as $CLRW \triangle TF$ function as $VIEW \triangle TF$	
 Suffix code Initial setting Example 		None 1: $AWR \triangle 0$		WRITE ON		

BIN

ASCII/Binary Date Out BIN

 $\texttt{BIN} riangle \emptyset$ BINAON

Function Sets the format of output trace data to ASCII or BINARY.

Header	Р	rogram comm	and	Query	Response
BIN	BIN∆sw	J			
 Value of sw Suffix code 		Ø,OFF: 1,ON: None	ASCII BINARY		
 Initial setting Example 		Ø: BIN $ riangle$ Ø	ASCII		

BMD

Trace B Storage Mode BMD

Function Selects the mode for processing the trace B waveform.

Header	Program command			Query	Response
BMD	BMD∆n			BMD?	BMD∆n
 Value Suffix Initial Example 	code setting	Ø: 1: 2: 3: 4: 5: None Ø: BMD△Ø	NORMAI MAX HO AVERAG MIN HOL CUMULA OVER WI NORMAI	LD E .D ATIVE RITE	

BNDC

Band Select BNDC

Function Sets the band 0 to 8.1 GHz.

Header	Pr	ogram comma	เnd	Query		Response
BNDC	BNDC∆a	a=0,1		BNDC?	a	a=0,1
 Value Suffix Initial Exam 	code setting	Ø: 1: None AUTO: BNDC△Ø BNDC△1	BAND 1=	0 HZ to 3.0 GHZ 10 MHZ to 3.0 GH 10 MHZ to 3.0 GH		

BSAUTO

BSAUTO BW/SWT Auto

Function Allows RBW, VBW, and the sweep time to be set in AUTO mode.

Header	Program command	Query	Response
BSAUTO	BSAUTO		
Example	e BSAUTO	•	

2-9

BWR

BWR Trace B Write Switch

Function Controls writing of the waveform data to trace B.

Header	Program command		Query	Respo	inse	
BWR	BWR∆sw			BWR?	$BWR \triangle sw$	sw=ON,OFF
 Value Suffix Initial Exam 	code setting	1,ON: Ø,OFF: None 1: BWR△Ø	TRACE B	WRITE ON (same f WRITE OFF (same f WRITE ON		

CAL Calibration

Function Performs calibration using the internal CAL signal.

Header	Program command	Query	Response
CAL	CAL		
Exam	ple CAL	1	

CF

CF **Center Frequency**

Function Sets the center frequency (same function as CNF).

Header	F	Program command	Query	Response
CF	CF∆f CF∆a		CF?	f f=-50000000 to 3050000000 Transfers the data with no suffix code in units of 1 Hz.
ValueValueSuffix	of a	50 MHz to 3.05 GHz UP: CENTER FREQ DN: CENTER FREQ f: None:		
		HZ: KHZ, KZ MHZ, MZ GHZ, GZ	HZ (10^0)	
■ Initial ■ Exam		a: None Initial value of $a = 1.5$ CF \triangle 1235456 CF \triangle 50MHz CF \triangle UP	05 GHz	

CLRW

CLRW Clear & Write

Function Clears the trace waveform data to set the write mode to ON.

Header	Program comma	and	Query	Response
CLRW	CLRW∆tr			
Value	of tr TRA:		ame function as AWI	

		1140011 (sume function us 1101021)
	TRB:	Trace B (same function as BWR $\triangle 1$)
	TRIME:	Trace TIME (same function as TMWR $\triangle 1$)
Example	$CLRW \triangle TF$	RA

CMK?

CMK? Current Marker Position

Function Reads the current marker position.

Header	Program command	Query	Response
CMK?		CMK?	СМК∆р
■ Value Exam			

CONTS

CONTS Continuous Sweep Mode

■ Function Sets the sweep mode to continuous mode (same function as S1).

Header	Program command	Query	Response
CONTS	CONTS		

■ Example CONTS

DETM

DETM Detection Mode

Function Selects the detection mode for the specified trace.

Header	Pro	ogram comm	and	Query	Response
DETM D)ETM∆tı	r,a		DETM?∆tr	a
■ Value of	f tr	TRA: TRB: TRIME:	Trace A Trace B Trace TIM	IE	
■ Value of	fa	POS: SMP: NEG:	POSITIVE SAMPLE NAGETIV		
■ Suffix co	ode	None			
■ Initial se■ Example	Ū	POS: I DETM△TR DETM△TR DETM△TR	B, SMP	EAK	

DFMT

DFMT Display Format

Function Specifies the display mode/format.

Header	Program command	Query	Response
DFMT	DFMT∆a	DFMT?	a
■ Value	of a A: Trace A	1	

	·	1140011
	B:	Trace B
	TIME:	Trace TIME
	AB1:	Trace A/Trace B (A & B)
Suffix code	None	
Initial setting	A:	Trace A
Example	DFMTATI	ME

DL

DL Display line,Display-line Level

Function Turns the display line on or off, and sets its level.

Header	Р	rogram command	Query	Response
DL	DLAsw		DL?	OFF
DLAl				
Value	of sw	ON: ON		
■ Value	■ Value of ρ OFF: OFF Value equivalent to full For LOG scale: RLV-1			xis.
■ Suffix	■ Suffix code None:dBm			
■ Initial setting DB, DBM, DM: dBr -60.00 dBm (Level equ			t of the scale)	
Exam	ple	DL_OFF		
		$DL \triangle - 10.0DBM$		

DSPLVM

DSPLVM Marker Level Absolute/Relative

■ Function With the trace mode specified, also specifies the marker level in the absolute value display or in the relative value display when seen from the display line.

Header	Program	command	Query	Response
DSPLVM	DSPLVM△t	î,a	DSPLVM?∆tr	a
■ Value of	tr TRA : TRB : TRIN	Trace B		
Value of	a ABS: REL:		value	
Suffix co	de None			

	КБЦ:	Relative value
Suffix code	None	
Initial setting	ABS:	Absolute value
Example	DSPLVM	$ riangle \mathtt{TRA}$, REL

FA Start Frequency

Function Sets the start frequency.

Header		Program command	Query	Response
FA	FA∆f		FA?	f
				f=-50000000 to 3050000000
				Transfers the data with no suffix code in units of 1 Hz.
■ Value ■ Suffix	-	-50 MHz to 3.05 GHz None: Hz (10^0) HZ: Hz (10^0) KHZ, KZ: kHz (10^3) MHZ, MZ: MHz (10^6) GHZ, GZ: GHz (10^9))) 5)	
■ Initial ■ Exam		Initial value of $f = 10 \text{ M}$ FA \triangle 1GZ		

FB

Stop Frequency

Function Sets the stop frequency (same function as SOF).

Header	I	Program command	Query	Response
FB	FB∆f		FB?	f f=-50000000 to 3050000000 Transfers the data with no suffix code in units of 1 Hz.
 Value Suffix Initial Exam 	code	-50 MHz to 3.05 GHz None: Hz (10^0) HZ: Hz (10^0) KHZ, KZ: KHz (10^3) MHZ, MZ: MHz (10^6 GHZ, GZ: GHz (10^9) Initial value of $f = 3.0$ GHz FB△2GHZ	5)))	

FB

FRQ

FRQ Frequency Mode

Function Selects the mode for setting the FG frequency band.

Header	Pı	rogram comm	and	Query	Response
FRQ	FRQ∆n			FRQ?	FRQ∆n
 Value Suffix Initial Exam 	code setting	0: 2: None 2: FRQ△Ø FRQ△1	CENTER- START-S START-S	ТОР	

FS

FS Full Span

Function Sets the frequency span to the maximum value settable in the frequency band being set.

Header	Program command	Query	Response		
FS	FS				
L Exam	Example FS				

GATE Gate Sweep ON/OFF

OFF:

 $GATE \triangle ON$

Function Sets the gate function to be set to ON or OFF.

OFF

Header	Program command		Query	F	lesponse	
GATE	$GATE \triangle sw$			GATE?	SW	sw=ON,OFF
ValueSuffix		1,ON: Ø,OFF: None	ON OFF			

GD Gate Delay

Initial settingExample

Function Sets the delay time of the gate.

Header	Program command	Query	Response
GD	GD∆t	GD?	t
			t=2 to 100000
			Transfers the data with no suffix code in units of 1 μ s.

Value of t	2 µsec to 100 ms		
Suffix code	None :	ms	
	US:	μs	
	MS:	ms	
	S:	S	
 Initial setting Example 	Initial val GD△2ØM	ue of $a = 200 \ \mu sec$	

GD

GL

GL Gate Length

Function

Sets the width of the gate.

Header	Program command	Query	Response
GL	GL∆t	GL?	t
			t=2 to 100000 Transfers the data with no suffix code in units of 1 μ s.

Value of t	2 µsec to 100 msec	
Suffix code	None :	ms
	US:	μs
	MS:	ms
	S:	S
Initial setting	Initial value	of $t = 1 ms$
Example	$GL \triangle 20MS$	

HOLDPAUSE

HOLDPAUSE Max/Min Hold Sweep Mode

■ Function Specifies the processing (step or continue) after a specified number of averagings of sweep.

Header	Program command	Query	Response
HOLDPAUS	E HOLDPAUSE 🛆 a	HOLDPAUSE?	a

■ Value of a	Ø, OFF: 2 to 1024	Continue (∞)
 Suffix code Initial setting Example 	None Ø: HOLDPAUSE△32	Continue (∞)

LG

LG Scale

Function

Sets the Y axis magnification and scale.

Header	Р	rogram command	Query	Response
LG	LG∆l LG∆a		LG?	1
■ Value ■ Value		1: 1 dB/di 2: 2 dB/di 5: 5 dB/di 1Ø: 10 dB/di UP: SCALE DN: SCALE	v v liv	
 Suffix Initial Exam 	setting	DB,DBM,DM:	dB/div dB/div 10 dB/div	

LSS

LSS Reference Level Step size(Manual)

Function Sets the step size (manual values) for increasing and decreasing the reference level.

Header	Program command	Query	Response	
LSS	LSS△l	LSS?	LSS \triangle l l=0.1 to 100.0 Transfers the data with no suffix code in units of 1 dB.	

Value of I	0.1 to 100.00 dB	(0.01 dBstep)
Suffix code	None:	dB
	DB,DBM,DM:	dB
Initial setting	Value of $\ell = 10 c$	lB
Example	$LSS \triangle 6$	
	$LSS \triangle 10$	

LSSA

LSSA Reference Level Step Size(Auto)

■ Function Sets the step size (auto values) for increasing and decreasing the reference level during LOG SCALE operation.

Header	Pr	ogram comr	nand	Query	Response)
LSSA	LSSA∆n			LSSA?	LSSA∆n	a=1,2,5,10
■ Value	of n	1: 2: 5: 1Ø:	1 div 2 div 5 div 10 div	L		

	1Ø:	10 div
Suffix code	None	
Initial setting	1:	1 div
Example	LSSA riangle 10	

MADJBWLN

MADJBWLN ADJ-CH Band Line

■ Function Sets the display of the adjacent channel range line ON/OFF.

Header	Program command	Query	Response
MADJBWLN	MADJBWLN△sw	MADJBWLN?	SW

■ Value of sw	OFF: ON:	OFF ON
Suffix codeInitial settingExample	None OFF: MADJBWLN	OFF △OFF

MADJCTRLN

MADJCTRLN ADJ-CH Center Line

Function Sets the display of the adjacent channel center line ON/OFF.

Header	Program command	Query	Response
MADJCTRLN	MADJCTRLN $ \triangle sw$	MADJCTRLN?	SW

Value of sw	OFF:	OFF
	ON:	ON
Suffix code	None	
Initial setting	ON:	ON
Example	MADJCTRL	$N \triangle OFF$

MADJGRAPH

MADJGRAPH Adjacent CH Graph

■ Function Sets the graph display function of ADJ-CH measure ON/OFF.

Header	Program command		Query	Response
MADJGRAPH	MADJGRAPH \triangle sw		MADHGRAPH?	SW
■ Value of sw	OFF: ON:	GRAPH OFF GRAPH ON		

	ON:
Suffix code	None
Initial setting	ON:
Example	MAD

OFF: GRAPH OFI ON: GRAPH ON None ON: Graph ON MADJGRAPH△ON

MADJMOD

MADJMOD ADJ-CH Measure Method

Function Selects the calculation method of ADJ-CH measure.

Header	Program command		Query	Response
MADJMOD	MADJMOD∆a		MADJMOD?	a
		=Total Power (Mod n =REF LEVEL (Un-m		

Suffix code	None			
Initial setting	MOD:	R:	Total Power	
Example	MADJMOD	∆MOD		

MEAS

MEAS Measure Function

Function Executes each item of the Measure functions when specified.

Header	Program command	Query	Response
MEAS	MEAS∆data1,data2	MEAS?	datal datal=OFF,NOISE,OBW, ADJ, POWER

■ Value of data1,data2

Format 1: Specifies the measurement item and whether to switch it ON/OFF or execute it.

OFF:	Measurement off
NOISE, ON:	Noise calculation ON
NOISE, OFF:	Noise calculation OFF
OBW, EXE:	Executes the OBW calculation.
ADJ, EXE:	Executes the ADJ-CH calculation.
POWER, EXE:	Executes the burst power calculation.
Format 2: Specifies the measure	urement item and calculation system. Then, specifies
whether to switch i	t ON/OFF or execute it.
NOISE, ABS:	Sets the noise calculation (Absolute method) to ON.
NOISE, CN:	Sets the noise calculation (C/N ratio method) to ON.
OBW, XDB:	Executes the OBW calculation (X dB down method).
OBW, N:	Executes the OBW calculation (N% method).
ADJ, UNMD:	Executes the ADJ-CH calculation (R: Ref Level method).
ADJ, MOD:	Executes the ADJ-CH calculation (R: Total Power method).

MKCF

MKCF Marker to CF

Function Sets the marker to the center frequency (same function as MKR \triangle 3).

Header	Program command	Query	Response
MKCF	MKCF		

■ Example MKCF

MKD

MKD Delta Marker Mode

Function Sets the marker mode to the delta marker mode.

Header	Program command	Query	Response
MKD	MKD		

■ Example MKD

MKF?

MKF? Marker Frequency Read

■ Function Reads out the frequency or time data at the marker point. In the delta marker mode, the frequency or time differences are read out.

Header	Program command	Query	Response
MKF?		MKF?	f
			t

Value of f	No unit, frequency data with 1 Hz unit, Resolution 0.1 Hz
Value of t	No unit, time data with 1 μ s unit, Resolution 0.1 μ s
Example	MKF?

MKL?

MKL? Marker Level Read

■ Function Reads out the level data at the marker point. In the delta marker mode, the level differences are read out.

Header	Program command	Query	Response
MKL?		MKL?	1
Value of I No unit. Level data in units of 1 dB (when display unit system for marker level is dB Resolution is 0.01 dB.			

■ Example MKL?

MKN

MKN Marker Position

Function Specifies the zone marker center position on the X axis in the frequency or time unit.

Header	Pr	rogram comm	and	Query	Response
MKN	MKN△f MKN△t MKN△a			MKN?	f, t f=-50000000 to 305000000 Transfers the data with no suffix code in units of 1 Hz. t=0 to 100000000 Transfers the data with no suffix code in units of 1 μs.
■ Value■ Value■ Value	of t			(specified when the ed when the valid tr	
■ Suffix	code	f: t:	None: HZ: KHZ,KZ: MHZ,MZ: GHZ,GZ: None: US: MS:	Hz (10^0) Hz (10^0) kHz (10^3) MHz (10^6) GHz (10^9) ms μs ms	
■ Exam	ple	MKN△100 MKN△UP	S: MHZ	S	

MKOFF

MKOFF Marker Mode

Function Turns off the marker mode.

Header	Program command	Query	Response
MKOFF	MKOFF∆a		

Value of a	ALL:	Marker off
	None:	Marker off
Suffix code	None	
Example	MKOFF riangle	ALL
-	MKOFF	

MKP

MKP Marker Position

■ Function Specifies the zone marker center position on the X axis in the point unit (same function as MKZ).

Header	Program command		Query	Response	
MKP	МКР∆р		MKP?	q	p=0 to 500
 Value of p 0 to 500 Suffix code None Initial setting Value of p=250 					

■ Finitial setting Value of p= ■ Example MKP△25Ø MKP△5ØØ

MKPK

MKPK Peak Search

■ Function Searches the spectrum being displayed for one of the special points, and moves the marker to that point.

Header	Pr	ogram comma	nd		Query	Response
МКРК	МКРК∆а			-		
 Value Suffix Exam 	code	None: HI: NH: NR: NL: None MKPK△HI MKPK△NL		PEAK NEXT NEXT	(MAX)	

MKPX

MKPX Peak Resolution (Excursion)

Function Switches the marker mode and executes the 'MKR to 'functions.

Header	Program command	Query	Response	
МКРХ	MKPXAl	MKPX?	1 1=0.01 to 50.00 Transfers the data with no suffix code in units of 1 dB.	
Value				

Suffix code	None:	dB
	DB:	dB
Initial setting	5.Ø:	5 dB
Example	$MKPX \triangle 1$	ØDB

MKR

MKR Marker Mode

Function Switches the marker mode and executes the 'MKR to 'functions.

Header	Pr	ogram comma	and	Query	Respons	se
MKR	MKR $ riangle$ n			MKR?	MKR∆n	n=0 to 7
■ Value	of n	Ø: 1: 2: 3: 4: 7:	NORMAL DELTA OFF MKR to MKR to ZONE to	REF		
SuffixInitialExam	setting	None Ø: NORM MKR△Ø	IAL			

MKRL

MKRL Marker to REF

Function Sets the detection resolution of the peak point.

Header	Program command	Query	Response
MKRL	MKRL		

Example

MKRL

MKTRACE

MKTRACE Active Marker Trace

Function Specifies the marker display trace when the display format is TRACE A on B.

Header	Program command	Query	Response
MKTRACE	MKTRACE _ tr	MKTRACE?	tr
■ Value of tr	TRA: Trace A		

	TRB:	Trace B
Suffix code	None	
Initial setting	TRA:	Trace A
Example	MKTRACE	∆TRB

MKW

MKW Zone Marker Width

Function Specifies the zone marker width in the div unit.

Header	Program command		Program command		Query	Respor	ise
MKW	MKW∆n			MKW?	MKW∆n	a=0 to 2,5 to 7	
 Value Suffix Initial Example 	code setting	Ø: 1: 2: 5: 6: 7: None 5: MKW△1 MKW△5	0.5 div Spot 10 div 1 div 2 div 5 div 1 div				

MNOISE

MNOISE Noise Measure Method

Function Selects the calculation method for noise measurement.

Header	Program command	Query	Response
MNOISE	MNOISE△a	MNOISE?	a

Value of a	ABS:	Absolute method
	CN:	C/N Ratio method
Suffix code	None	
Initial setting	ABS:	Absolute method
Example	$\texttt{MNOISE} \triangle I$	ABS

MOBW

MOBW OBW Measure Method

Function Selects the calculation method for OBW.

Header	Program command	Query	Response
MOBW	MOBW∆a	MOBW?	a
■ Value of a XDB: XdB Down method			

Value of a	XDB:	XdB Down met
	N:	N% method
Suffix codeInitial settingExample	None N: MOBW△N	N% method

МХМН

MXMH Max Hold

Function Sets the mode for processing the trace waveform to MAX HOLD.

Header	Program command	Query	Response
МХМН	MXMH∆tr		

Value of tr	TRA: Trace A
	TRA: Trace B
Suffix code	None
Example	$MXMH \triangle TRA$

MZWF

MZWF Zone Marker Width

Function Specifies the zone marker width on the X axis in one of the frequency units.

Header	Program command	Query	Response
MZWF	MZWF△f	MZWF?	f
			f=1 to 300000000
			Transfers the data with no suffix code in units of 1 Hz

Value of f	1 Hz to 3.0 GHz	
Suffix code	None:	Hz (10^0)
	HZ:	Hz (10^0)
	KHZ,KZ:	kHz (10^3)
		MHz (10^6)
	GHZ,GZ:	GHz (10^9)
Initial setting	Width equiv	valent to 1 div (299 MHz)
Example	$MZWF \triangle 109$	8
	$MZWF \triangle 1MI$	HZ

OBWN

OBWN OBW N% Value

Function Sets the conditions of the occupied frequency bandwidth in units of 1%.

Header	Program command	Query	Response
OBWN	OBWN∆n	OBWN?	n

 ■ Value of n
 0.01 to 99.99 (0.01 step) : 0.01 to 99.99% (0.01%step)

 ■ Suffix code
 None

 ■ Initial setting
 99%

 ■ Example
 OBWN△8Ø

OBWXDB

OBWXDB OBW XdB Value

Function Sets the conditions of the occupied frequency bandwidth in units of 1 dB.

Header	Program command	Query	Response
OBWXDB	OBWXDB 🛆 l	OBWXDB?	1

Value of I	0.01 to 100 (0.01 step):	0.01 to 100 dB (0.01 dB step)
Suffix code	None: dB	
	DB: dB	
Initial setting	25dB	
Example	$OBWXDB \triangle 6DB$	

PCF

PCF Peak to Center Frequency

■ Function Finds the maximum point of the spectrum being displayed, and sets the center frequency to that point.

Header	Program command	Query	Response
PCF	PCF		

■ Example PCF

PRL

PRL Peak to Reference Level

■ Function Finds the maximum point of the spectrum being displayed, and sets it level to the reference level.

Header	Program command	Query	Response
PRL	PRL		

Example PRL

PWRSTART

PWRSTART Power Measure Start Point

Function Specifies the point at which to start burst-power measurement.

Header	Program command	Query	Response
PWRSTART	PWRSTART△p	PWRSTART?	p

Value of p	0 to 500
Suffix code	None
Initial setting	100point
Example	PWRSTART $\triangle 100$

PWRSTOP

PWRSTOP Power Measure Stop Point

Function Specifies the point at which to terminate burst-power measurement.

Header	Program command	Query	Response
PWRSTOP	PWRSTOP△p	PWRSTOP?	p

Valur of p 0 to 500
 Suffix code None
 Initial setting 4ØØpoint
 Example PWRSTOP△4ØØ

RB

RB Resolution Bandwidth

Function Sets the resolution bandwidth (same function as RBW).

Header	Program command			Query	Response
RB	RB∆f RB∆a			RB?	f f=300 to 1000000 Transfers the data with no suffix code in units of 1 Hz
■ Value of f 300 Hz to 1 MHz (1/3 s				sequence)	
■ Value	ora	UP: DN: AUTO:	RBW UP RBW DO' RBW AU		
■ Suffix code f: None: HZ: KHZ, KZ MHZ, MZ GHZ, GZ			MHz (10^6)		
■ Initial setting RBW=calculated value				when AUTO is sele	ected for RBW
■ Example RB△3KHZ					

RES?

RES? Measure Result

Function

Reads out the results functions.

Header	Program command	Query	Response
RES?		RES?	data1 data1, data2 data1, data2, data3, data4

■ Values of data1,data2,data3, and data4

Measure control item (corresponding command)	Response	Value of data1	Value of data2	Value of data3	Value of data4
When the measure item or sub item is OFF	OFF		Not transferred		
NOISE MEASURE (MEAS∆ NOISE,ABS) (MEAS∆ NOISE,C/N)	1	Value of l with no suffix code in units of 1 dB (dBm/ch, dBm/Hz, dBc/ch, dBc/Hz). Resolution: 0.01 dB			
OBW MEASURE (MEAS△ OBW,XDB) (MEAS△ OBW,N)	f1,f2	Occupied bandwidth of f1 with no suffix code in units of 1 Hz. Resolution: 1 Hz	Center frequency of f2 with no suffix code in units of 1 Hz. Resolution: 1 Hz		
ADJ CH MEASURE (MEAS△ ADJ,UNMD) (MEAS △ ADJ,MOD)	IL1,IU1 IL2,IU2	Lower channel of CHSEPA1 of IL1 with no suffix code in units of 1 dB. Resolution: 0.01 dB	Upper channel fo CH SEPA2 of IU1 with no suffix code in units of 1 dB. Resolution: 0.01 dB	Lower channel of CH SEPA2 of IL2 with no suffix code in units of 1 dB. Resolution: 0.01 dB	Upper channel of CH SEPA2 of IU2 with no suffix code in units of 1 dB. Resolution: 0.01 dB
BURST POWER MEASURE (MEAS△POWER,EXE)	l,w	dB m value of l with no suffix code in units of 1 dBm. Resolution: 0.01 dBm	pW value of w with no suffix code in units of 1 pW. Resolution: 1 pW		

If the MEASURE function has caused a calculation error or execution error, the affected value is represented by "***".

■ Example RES?

RL Reference Level

■ Function Sets the reference level (same function as RLV).

Header	Program command	Query	Response
RL	RL△l	RL?	1
	RL∆a		l: No units.

■ Value of I	Value from -75 dBm to +30 dBm (Aux Input connector) (0.01 dB step) Value from -50 dBm to +50 dBm (Main Input/Output connector)				
■ Value of a	UP:LEVEL STEP UPDN:LEVEL STEP DOWN				
■ Suffix code	None: dBm DB, DBM, DM: dBm				
Initial setting	l = -10 dBm				
■ Example	$RL \triangle -100DBM$ $RL \triangle 5V$ $RL \triangle -10V$ $RL \triangle UP$				

RMK?

RMK? Reference Marker Position

Function Reads out the position of the reference marker.

Header	Program command	Query	Response				
RMK?		RMK?	RMK∆a				

■ Value of a 0 to 500 ■ Example RMK?

SNGLS

SNGLS Single Sweep Mode

Function Sets the sweep mode to single sweep.

	Header	Program command	Query	Response
	SNGLS	SNGLS		
L				

■ Example SNGLS

SP

SP Frequency Span

Function Sets the frequency span (same function as SPF).

Header	Program command		Query	Response	
SP	SP∆f			SP?	f
	SP∆a				f=-0 to 300000000
					Transfers the data with no suffix code in units of 1 Hz.
 Value Value Suffix Initial Exam 	of a code setting	0 Hz, 10 kH UP: DN: None: HZ: KHZ, KZ: MHZ, MA: GHZ, GZ: f=2.99 GHz SP \triangle 1GHZ	FREQ SPA FREQ SPA Hz (10^0) Hz (10^0) kHz (10^3 MHz (10^4 GHz (10^9	AN STEP UP (same AN STEP DOWN (sa) 6)	

SRCHTH

SRCHTH Peak Search Threshold

Function Sets the threshold function for detecting a peak point.

Header	Program command		Query		Response	
SRCHTH	SRC	HTH∆a		SRCHTH?	SW	sw=OFF,ABOVE,BELOW
■ Value of	fsw	Ø,OFF: 1,ON:	No thresh Threshold	old function function	-	
Value of	fa	ABOVE:	Above det	••••••		
 Suffix co Initial se Example 	etting	BELOW: None OFF: SRCHTH△2		old function		

SS

Frequency Step Size

Function Sets the frequency step size for stepping up/down the frequency.

Header	F	Program command		Query	Response
SS	SS∆f		SS?		f f=-0 to 3000000000 Transfers the data with no suffix code in units of 1 Hz.
 Value of f Suffix code Example 		HZ: H: KHZ,KZ: kH MHZ,MA: M	z z (10^0) z (10^0) Hz (10^3) Hz (10^6) Hz (10^9)		

SS

ST

ST Sweep Time

Function

Sets the frequency sweep time/time span.

Header		Program comma	Ind	Query	Response	
ST	ST∆t ST∆a			ST?	t t=1000 to 100000000 Transfers the data with no suffix code in units of 1 μs.	
■ Value■ Value■ Suffix	of a	UP: DN: AUTO: t:	SWT UP SWT DOV SWT AUT None: ms US: µs MS: ms S: s		s)	
■ Initial setting■ Example		a: None Calculated value when AUTO is selected for SWT $ST \triangle AUTO$ $ST \triangle 20MS$				

SWP

SWP Single Sweep/ Sweep Status

Function
 Executes single sweep/Responds to sweep status (sweep completed/sweep in progress).
 When accepted by the spectrum analyzer, the SWP command causes a single sweep to be executed by setting the sweep mode to 'SINGLE'.
 The next command waits without being processed until its single sweep is completed (same function as TS). The SWP? Query command is used to Query the current sweep status (sweep completed/sweep in progress).

Header	Program command	Query	Response
SWP	SWP	SWP?	SWP∆sw

Value of sw	Ø:	Sweep completed
	1:	Sweep progress
Example	SWP	
	SWP?	

SWSTART

SWSTART Restart Sweep

Function Restarts the sweep.

Header	Program command	Query	Response
SWSTART	SWSTART		

Example

SWSTART

TDLY

TDLY Delay Time

Function Sets the delay time from the point where trace time triggering occurs.

Header	Program command	Query	Response
TDLY	TDLY∆t	TDLY?	t t=0 to 100000 Transfers the data with no suffix code in units of 1 μs.

Value of t	0 sec to 100	msec
Suffix code	None: ms	
	US:	μs
	MS:	ms
	S:	S
Initial setting	Ø:	0 s
Example	TDLY $\triangle 20$	ØMS

ТМ

TM Trigger

Function Sets the trigger switch and trigger source.

Header	Program command	Query	Response
TM	TM∆a	TM?	a

■ Value of a	FREE: WIDEVID: EXT:	FREERUN wide IF Video EXT
■ Suffix code	None	
Initial setting	FREE:	FREERUN
Example	$TM \triangle FREE$	

TMMD

Trace Time Storage Mode TMMD

Selects the mode for processing the trace TIME waveform. Function

Header	Program command		Query	Response	
TMMD	TMMD△n			TMMD?	TMMD∆n
 Value Suffix Initial Exam 	code setting	Ø: 1: 2: 3: 4: 5: None Ø: TMMD△Ø	NORMAL MAX HO AVERAG MIN HOL CUMULA OVER WI NORMAL	LD E D ATIVE RITE	

TMWR

Trace Time Write Switch TMWR

Function Controls writing of the waveform to trace TIME.

Header	Program command		Query	Respo	onse	
TMWR	TMWRAsw		TMWR?	TMWR∆sw	sw=ON,OFF	
 Value Suffix Initial Exam 	code setting	1,ON: Ø,OFF: None ON: TMWR△ON	ON OFF ON			

TRGS

TRGS Trigger Switch

Function Switches the trigger switch to Free run or Triggered.

Header	Program command	Query	Response
TRGS	TRGS∆a	TRGS?	a

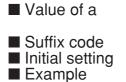
Value of sw	FREE:	FREERUN
	TRGD:	TRIGGERED
Suffix code	None	
Initial setting	FREE:	FREERUN
Example	$TRGS \triangle FI$	REE

TRGSLP

TRGSLP Trigger Slope

■ Function Selects the rising or falling slope of the trigger when trigger source is VIDEO or EXT mode.

Header	Program command		Query	Response
TRGSLP	TRGSLP∆a		TRGSLP?	a
■ Value of a RISE: Risin FALL: Falli			ge ge	


FALL:	Falling edge
None	6 6
RISE:	Rising edge
TRGSLP riangle	RISE
	None RISE:

TRGSOURCE

TRGSOURCE Trigger Source

Function Selects the trigger source. The trigger switch setting is not changed by this command.

Header	Program command	Query	Response
TRGSOURCE	TRGSOURCE∆a	TRGSOURCE?	a

WIDEVID: WIDE IF VIDEO EXT: EXT None VID: VIDEO TRGSOURCE△VID

TSAVG

TSAVG Take Sweep with Averaging

■ Function Performs synchronous sweeping the number of times specified in the current Averaging setting.

Header	Program command	Query	Response
TSAVG	TSAVG		

Example TSAVG

TSHOLD

TSHOLD Take Sweep with Max/Min Holding

■ Function Performs synchronous sweeping by the number of times specified in the current holding setting.

Header	Program command	Query	Response
TSHOLD	TSHOLD		

Example TSHOLD

TSP

TSP Time Span

Function Sets the time span of the trace.

Header	F	Program command	Query	Response
TSP	TSP∆t		TSP?	t t=1000 to 1000000000 Transfers the data with no suffix code in units of 1 μs
 Value Suffix Initial Exam 	code setting	$\begin{array}{llllllllllllllllllllllllllllllllllll$		<u>.</u>

UCL?

UCL? Query Uncal Status

■ Function Reads out the UNCAL status.

Header	Program command	Query	Response
UCL?		UCL?	UCL∆n

Value of n	Ø:	NORMAL
	1:	During UNCAL
Example	UCL?	

UNC

UNC Uncal Display ON/OFF

■ Function Specifies whether 'UNCAL' is displayed when UNCAL occurs.

Header	Program command		Query	Respo	onse	
UNC	UNC∆sw			UNC?	UNC△sw	sw=ON,OFF
 Value Suffix Initial Exam 	code setting	1,ON: Ø,OFF: None ON: UNC△ON	ON OFF ON			

VAVG

VAVG Average

■ Function Sets averaging ON or OFF and sets the number of averaging processes.

Header	Program command	Query	Response	
VAVG	VAVG△sw	VAVG?	n	
	VAVG∆n			

Value of sw	1,ON:	ON	
	Ø,OFF:	OFF	
Value of n	2 to 102	4:	Number of averaging processes
Suffix code	None		
Initial setting	8:	8 time	28
Example	$VAVG \triangle ON$		
	$VAVG \triangle 12$	8	

VB

VB Video Bandwidth

Function Sets the video bandwidth (same function as VBW).

Header		Program comma	and	Query	Response
VB	$VB \triangle f$ $VB \triangle a$			VB?	f f=3 to 100000 or OFF Transfers the data with no suffix code in units of 1 Hz.
ValueValueSuffix	of a	3 Hz to 100 OFF: AUTO: UP: DN: f:) kHz OFF AUTO VBW UP VBW DO' None: HZ: KHZ, KZ: MHZ, MA: GHZ, GZ: None	Hz (10^0) Hz (10^0) kHz (10^3) MHz (10^6)	
■ Initial ■ Exam		Calculated VB∆3ØØH		VBW=AUTO.	

VIEW

VIEW View

Function Stops writing of the waveform data.

Header	Program command	Query	Response
VIEW	VIEW∆tr		

Value of tr	TRA:	Trace A
	TRB:	Trace B
	TRTIME:	Trace TIME
Suffix code	None	
Example	VIEWATRE	3

XMA

XMA Trace A Spectrum Data

Function Writes/reads the spectrum data to/from trace A (main trace) memory.

Header	Program command	Query	Response
XMA	XMA $ riangle$ p,b	XMA?∆p,d	b1, b2, b3 · · · (ASCII) b1 b2 b3 · · · (BINARY)

Value of p	0 to 500 (point No.)
------------	----------------------

Value of b	LOG scale: Integer of 0.01 dBm unit (independent of display unit system)
	When binary format is specified for response data, data for each point is composed
	of two bytes. The high-order byte is sent first.
Value of d	1 to 501 (number of points)
Example	XMA \triangle 1,-2000
	XMA? \triangle 1, 2 (reads two-point data items starting from point 1)

XMB

XMB Trace B Spectrum Data

Function Writes/reads the spectrum data to/from to trace B (main trace) memory.

Header	Program command	Query	Response
XMB	XMB∆p,b	XMB?∆p,d	b1, b2, b3 · · · (ASCII) b1 b2 b3 · · · (BINARY)
When binary format is s		,	dependent of display unit system) lata, data for each point is composed st.
\square Volue of d 1 to 501 (number of no		•	

■ Value of d 1 to 501 (number of points)

■ Example XMB△1,-2000

XMB? \triangle 1, 2 (reads two-point data items starting from point 1)

XMT **Trace TIME Spectrum Data**

Function Write/reads the spectrum data to/from the trace TIME memory.

Header	Program command		Query	Response
XMB	B XMT∆p,b		XMT?∆p,d	b1,b2,b3 (ASCII) b1 b2 b3 (BINARY)
C		`	dependent of display unit system) lata, data for each point is composed	
 of two bytes. The high Value of d Example I to 501 (number of poi XMT△1, -2000 		•	st.	

XMT? \triangle 1,2 (reads two-point data items starting from point 1)

Section 3 Sample Programs

This section gives some examples of the Microsoft Quick Basic program that controls the MT8801C Option 07 Spectrum Analyzer function from a personal computer which is used as a controller.

Note:

Microsoft Quick Basic is a trade mark of the Microsoft Corporation.

3.1	Preca	utions on Creating the Remote Control	
	Progra	am	3-2
3.2	Sampl	e Programs	3-3
	3.2.1	Initializing	3-3
	3.2.2	Reading the frequency and level at marker	
		point	3-4
	3.2.3	Reading trace data	3-5
	3.2.4	Delta marker	3-7
	3.2.5	Gate functions	3-9
	3.2.6	Adjacent-channel leakage power	
		measurement	3-12
	3.2.7	Occupied frequency bandwidth	
		measurement	3-14
	3.2.8	Burst wave average power measurement	3-16
3.3	Preca	utions on Creating the GPIB Program	3-18
3.4	Sampl	e Program (GPIB)	3-19
	3.4.1	Initializing (GPIB)	
	3.4.2	Reading trace data (GPIB)	3-20

3.1 Precautions on Creating the Remote Control Program

No.	Precaution	Description
1	Be sure to initialize each device.	There may be a number of the state in which each device is not proper to be actually sued due to operation on its own panel or execution of other programs. It is necessary to using individual devices with a prescribed condition resulting from initializing them. Execute initialization (INIT or *RST) of the functions proper to each device.
2	Do not send any command (related to the device) other than the INPUT #statement immediately after sending a query.	When a command other than the INPUT #statement is sent to the controller before the response to a query is read, the output buffer is cleared, and the response message disappears. For this reason, write the INPUT #statement in immediate succession to a query.
3	Create a program that avoids the exception processing of the protocol.	No.2 described above is one type of exception processing of the protocol. Avoid exception processing from occurring as requested. Avoid stoppage of execution caused by an error by providing a program with exception-processing section against exceptions that can be foreseen.
4	Protect RS-232C buffer overflow.	The RS-232C interface has a 512-byte data area as the internal receive buffer. The buffer overflow may occur depending on the processing. To protect the overflow, don't send a large amount of data (i.e. control commands) at a time for remote control using RS-232C. After sendind a command group, send *OPC? command to check the response for the synchronization before sending the next command.

Note the following points when writing remote control programs.

3.2 Sample Programs

3.2.1 Initializing

<Example 1> Initializes the Spectrum Analyzer Sample program <<Initialize>> ' Setup parameter of PC Com. port : 2400 BPS BAUD Parity : NONE Data bit : 8 bits Stop bit : 1 bit Terminator : Line Feed OPEN "COM1:2400,N,8,1,CD500,DS0,LF" FOR RANDOM AS #1 PRINT #1, "INI"' Initializes Spectrum Analyzer END

There is a '*RST' command in another command for executing initialization. The '*RST' command is used to execute initialization over a wider range. The usage of the 'IP' command is identical to the 'INI' command.

For general usage of INI and *RST, first initialize the Spectrum Analyzer device functions with the IP or INI command, then use the program commands to set only the functions to be changed. This prevents the spectrum analyzer from being controlled while unnecessary functions are set.

3.2.2 Reading the frequency and level at marker point

<Example 2> Sets the center frequency to 500 MHz and span to 10 MHz, then displays the frequency and level reading at the peak point on the controller screen when a signal to be measured is received.

```
2 ' Sample program
    <<Read out marker frequency & level>>
 3
  4
 5
 6
  ' Setup parameter of PC Com. port
 7'
8 OPEN "COM1:2400,N,8,1,CD500,DS0,LF" FOR RANDOM AS #1
 9
10 PRINT #1, "INI"' Initialize Spectrum Analyzer
11 '
12 PRINT #1, "CF 500MHZ"' Center frequency :500MHz
13 PRINT #1, "SP 10MHZ"' Span frequency :10MHz
14 PRINT #1, "SWP"' Take a sweep
15 '
16 PRINT #1, "PCF"' Set peak to center frequency
17 PRINT #1, "PRL"' Set peak to reference level
18 PRINT #1, "MKPK"' Search peak
19 '
20 PRINT #1, "MKF?"' Query marker frequency
21 INPUT #1, FREQ' Input marker frequency data
22 PRINT #1, "MKL?"' Query marker level
23 INPUT #1, LEVEL' Input marker level data
24 '
25 'Print out the result (Frequency/Level)
26 PRINT USING "Marker Frequency=####.### MHz";FREQ/1000000
27 PRINT USING "Marker LEVEL=####.## dBm";LEVEL
28 '
29 END
```

The center frequency and frequency span are set at line 12 and line 13 respectively. The SWP sweep command at line 14 does not execute the next message unless the sweep is completed. This command thus prevents the peak search and other program lines from being executed before the sweep is completed.

The PCF and PRL commands at lines 16 and 17 operate as follows: The former sets the peak point on the screen to the center frequency, and the latter sets its peak level center frequency to the reference level.

The "MKF?" and "MKL?" at lines 20 and 22 query the frequency and level at the marker point respectively, and the data is read with the INPUT#statement on the next line. When a command other than the INPUT#statement is sent before the response to a query is read, the output buffer is cleared, and the response message is deleted. For this reason, write the INPUT#statement immediately after a query.

Program execution result of <Example 2> Marker Frequency=501.251 △ MHz Marker LEVEL=-15.53 dBm

Note: \triangle is a space.

3.2.3 Reading trace data

```
<Example 3-1> Reads the trace level at all points when CF and SPAN are set to 500 MHz and 10 MHz
            respectively.
       2 ' Sample program
       3'
            <<Read out trace data (ASCII)>>
       5 '
       6 ' Setup parameter of PC Com. port
       7'
       8 OPEN "COM1:2400,N,8,1,CD500,DS0,LF" FOR RANDOM AS #1
       9 '
      10 PRINT #1, "INI"' Initialize Spectrum Analyzer
      11 '
      12 PRINT #1, "CF 500MHZ"' Center frequency :500MHz
      13 PRINT #1, "SP 10MHZ"' Span frequency :10MHz
      14 PRINT #1, "TS"'
                          Take a sweep
      15 '
      16 DIM TRACE(5Ø1)'
                          Define read data area
      17 PRINT #1, "BIN Ø"'Set read out data type to ASCII
      18 '
      19 FOR I = \emptyset TO 500' Repeat trace (\emptyset) to trace (500):501 points
      20 PRINT #1, "XMA? " + STR$(I) + ",1"' Query trace data
      21 INPUT #1, TRACE(I)'
                               Read out trace data
      22 'Print out trace data
      23 PRINT USING "###.##dBm"; TRACE(I) / 100
      24 NEXT I
      25 '
      26 END
```

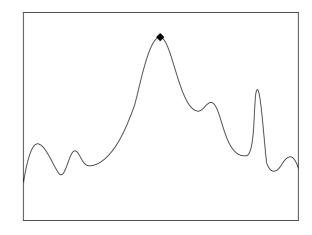
The "BIN_0" at line 17 is a command for specifying ASCII as the response data format. The ASCII or BINARY transfer format can be specified for the "XMA?", "XMB?" and "XMT?" queries for reading trace data.

The example 3-2 blocks the trace data at every 10 points, and reads it.

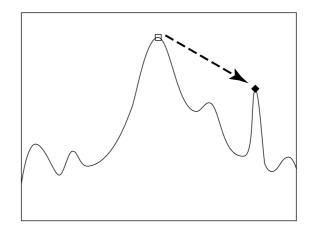
Section 3 Sample Programs

```
<Example 3-2> Blocks the trace data at every 10 points, and reads it.
        2 ' Sample program
       3 '
            <<Read out trace data (ASCII) BLOCKING>>
       5 '
       6 ' Setup parameter of PC Com. port
       7'
       8 OPEN "COM1:2400,N,8,1,CD500,DS0,LF" FOR RANDOM AS #1
       9 '
       10 PRINT #1, "INI"' Initialize Spectrum Analyzer
       11 '
       12 PRINT #1, "CF 500MHZ"' Center frequency :500MHz
       13 PRINT #1, "SP 10MHZ"' Span frequency :10MHz
       14 PRINT #1, "WSP"' Take a sweep
       15 '
       16 DIM TRACE(5Ø1)'
                         Define read data area
       17 PRINT #1, "BIN Ø"'Set read out data type to ASCII
       18 '
       19 FOR I = \emptyset TO 49\emptyset STEP 1\emptyset
       20 Repeat trace (0) to trace (499):500 points
       21 Blocking 10 trace data
       22
             PRINT #1, "XMA? " + STR$(I) + ",10"' Query trace data
       23
                         Read out trace data
             INPUT #1, TRACE(I), TRACE(I + 1), TRACE(I + 2), TRACE(I + 3),
       24
      TRACE(I + 4), TRACE(I + 5), TRACE(I + 6), TRACE(I + 7), TRACE(I + 8),
      TRACE(I + 9)
       25
             PRINT TRACE(I), TRACE(I + 1), TRACE(I + 2), TRACE(I + 3), TRACE(I
       + 4), TRACE(I + 5), TRACE(I + 6), TRACE(I + 7), TRACE(I + 8), TRACE(I + 9)
       26 NEXT I
       27 PRINT #1, "XMA? 500,1"'
                                   Query last trace data:trace(500)"
       28 INPUT #1, TRACE(500)
       29'
       30 FOR I = 0 TO 500' Print out trace data
       31
            PRINT USING "###.##dBm"; TRACE(I) / 100
       32 NEXT I
      33 '
      34 END
```

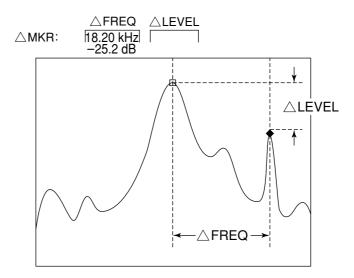
3.2.4 Delta marker


```
<Example 4> Using a delta marker, reads out the frequency and level differences between a peak
           point and the next peak point.
         2 ' Sample program
         3 '
             <<Read out delta marker frequency & level>>
         5 '
         6 ' Setup parameter of PC Com. port
         7 '
         8 OPEN "COM1:2400,N,8,1,CD500,DS0,LF" FOR RANDOM AS #1
         9 '
        10 PRINT #1, "INI"'
                                   Initialize Spectrum Analyzer
        11 '
        12 PRINT #1, "FA 500 MHZ"'
                                   Start frequency :500MHz"
        13 PRINT #1, "FB 2GHZ"'
                                   Stop frequency
                                                    :2GHz
        14 PRINT #1, "TS"'
                                   Take a sweep
        15 '
        16 PRINT #1, "MKR Ø"'
                                   Set marker to "Normal"
        17 PRINT #1, "MKPK"'
                                   search peak
        18 PRINT #1, "MKR 1"'
                                   Set marker to "Delta"
        19 PRINT #1, "MKPK NH"'
                                   search Next peak
        20 1
        21 PRINT #1, "MKF?"'
                                   Query Delta marker frequency
        22 INPUT #1, DFREQ'
                                   Input Delta marker frequency data
        23 PRINT #1, "MKL?"'
                                   Query Delta marker level
        24 INPUT #1, DLEVEL'
                                   Input Delta marker level data
        25 '
                                   Print out the result (Frequency/Level)
        26 PRINT USING "Delta Frequency=####.### MHz"; DFREQ / 1000000
        27 PRINT USING "Delta
                                 level=####.## dB"; DLEVEL
        28 '
        29 END
```

The "MKR \triangle 1" at line 18 is used to set the marker mode to DELTA, so that the reference marker can also be set together to the current marker position.


The "MKPK \triangle NH" at line 19 sets the marker search to NEXT PEAK to move the current marker to NEXT PEAK point.

The "MKF?" and "MKL?" at lines 21 and 23 query reading the frequency and level at the current marker position while the marker mode is NORMAL. It is also used to query reading the frequency and level differences between the current marker and the reference marker while the marker mode is DELTA.


Executing PEAK SEARCH (MKPK) at line 17 allows the current marker to be set to the peak point.

Line 19 allows the reference marker to be set together to the current marker position. Executing NEXT PEAK SEARCH MKPK \triangle NH at line 18 allows the current marker.

Lines 21 to 24 read out the \triangle FREQ and \triangle LEVEL displayed in the upper left of screen.

3.2.5 Gate functions

<Example 5> Reads out spectrum data by observing the burst wave using the gate function.

```
2 ' Sample program
3 ' <<Gate sweep>>
 5 '
 6
  ' Setup parameter of PC Com. port
 7 '
8 OPEN "COM1:2400,N,8,1,CD500,DS0,LF" FOR RANDOM AS #1
1Ø '
11 PRINT #1, "INI"'
                           Initialize Spectrum Analyzer
12 '
13 DIM TRACE (501) '
                                     Define read data area
14 PRINT #1, "CF 500MHZ"'
                                     Center frequency :500MHz
15 PRINT #1, "SP 10MHZ"'
                                     Span frequency :10MHz
16 PRINT #1, "RB 100KHZ"'
                                    Resolution BW :100kHz
17 PRINT #1, "TRGSOURCE WIDEVID"'
                                    Trigger source :Wide IF video
18 PRINT #1, "GD 50US"'
                                     Gate delay
                                                    :50 usec
19 PRINT #1, "GL 400US"'
                                     Gate length
                                                     :400 usec
2Ø '
21 PRINT #1, "GATE ON"'
                                     Gate sweep On
22 '
23 FOR TMR = \emptyset TO 25\emptyset\emptyset\emptyset
24 NEXT TMR'
                                     Wait
25 '
26 FOR I = \emptyset TO 5\emptyset\emptyset'
                                     Read out & print trace data
      PRINT #1, "XMA? " + STR$(I) + ",1"
27
      INPUT #1, TRACE(I)
28
29
      PRINT USING "###.##dBm"; TRACE(I) / 100
30 NEXT I
31 '
32 END
```

When the burst waveform shown in Fig. 3-1 is observed, the spectrum shown in Fig. 3-2 (a) is output. This function can conveniently be used to observe the spectrum of the ON interval (interval shown by A in Fig. 3-1) in this waveform. This program uses the wide IF video trigger signal as a gate source signal.

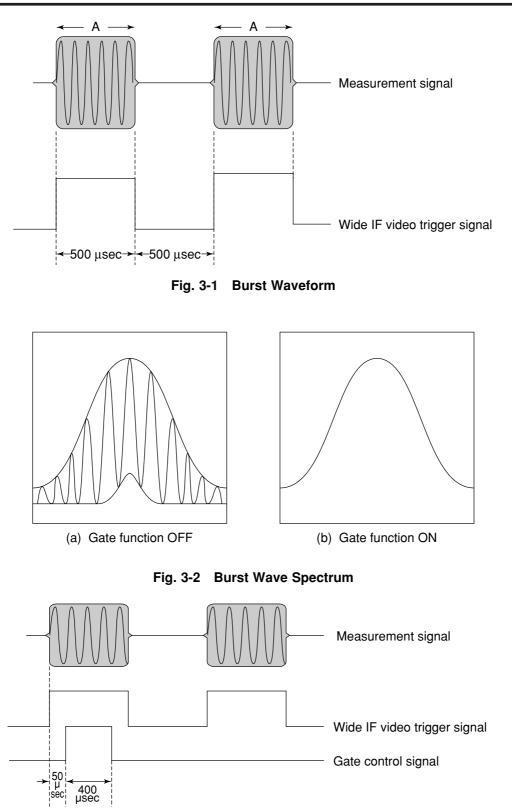


Fig. 3-3 Sample Program for Gate-Control Signal Generation Timing

3.2 Sample Programs

The RBW command at line 16 sets RBW to the optimum value depending on the GATE conditions (GATE DELAY: t1, GATE LENGTH: t2) as shown in Table 3-1 below.

The block from line 17 sets the trigger signal, and the block from lines 18 to 20 sets the gate conditions. The gate function is set to ON at line 21. The waiting time is granted at liens 23 and 24 because it takes time to form a perfect waveform which is fully connected.

The block from liens 26 to 30 allows trace data to be output by the "XMA?" query. The spectrum can be observed as shown in Fig. 3-2 (b) by executing this program.

RBW t2 t1 tз 1 kHz ≥3 msec 3 kHz ≥1 ms 10 kHz ≥230 µsec 30 kHz ≥200 µsec ≥20 µsec ≥1 µsec 100 kHz ≥20 µsec 300 kHz ≥15 µsec t1 t2 tз 1 MHz ≥10 µsec

Table 3-1 RBW Optimum Values

3.2.6 Adjacent-channel leakage power measurement

<Example 6> Subroutine for adjacent-channel leakage power measurement 2 ' Sample program 3 ' <<Adj ch Power measure>> 5 ' ' Setup parameter of PC Com. port 6 7 8 OPEN "COM1:2400,N,8,1,CD500,DS0,LF" FOR RANDOM AS #1 9 ' 10 PRINT #1, "INI"' Initialize Spectrum Analyzer 11 ' 12 PRINT #1, "CF 500MHZ"' Center frequency :500 MHz 13 PRINT #1, "SP 80KHZ"' Span frequency :80 kHz 14 ' 15 GOSUB ADJ' Call Adj. CH. Power measure subroutine 16 END 17 ' 19 ' Adj ch Power MEASURE SUBROUTINE 21 ADJ: 22 ' 23 PRINT #1, "ADJCH BOTH" 24 PRINT #1, "ADJCHBW 8.5KHZ" 25 PRINT #1, "ADJCHSP 12.5KHZ" 26 PRINT #1, "ADJCHSPF 25KHZ" 27 PRINT #1, "MADJMOD MOD" 28 ' 29 PRINT #1, "SWP" 30 PRINT #1, "MEAS ADJ, EXE" 31 ' 32 PRINT #1, "RES?"' Query the result 33 INPUT #1, LWLVL1, UPLVL1, LWLVL2, UPLVL2' Read out the result data 34 ' response-1:Lower channel power (near) 35 ' response-2:Upper channel power (near) 36 ' response-3:Lower channel power (Far) 37 ' response-4: Upper channel power (Far) 38 ' 39 PRINT USING "Lower side CH1 Level=####.###dBm"; LWLVL1 4Ø PRINT USING "Upper side CH1 Level=####.###dBm"; UPLVL1 41 PRINT USING "Lower side CH2 Level=####.###dBm"; LWLVL2 42 PRINT USING "Upper side CH3 Level=####.###dBm"; UPLVL2 43 ' 44 RETURN

This ADJ program is a subroutine, which requires the center frequency and frequency span to be set to appropriate values in the main program. Then it is executed.

3.2 Sample Programs

The block from lines 23 to 26 sets adjacent-channel measurement conditions, which is both the upper and lower channels, the 8.5 kHz channel width, 12.5 kHz channel 1 separation, and 25.0 kHz channel 2 separation. After the sweep is executed by the "TS" command at line 29, the adjacent-channel leakage power is measured at line 30. Line 32 queries reading the measured value at line 33.

The program in <Example 8> for measuring a modulated wave relative to the total power can be changed to a program for measurement relative to the reference level by rewriting line 27 as shown below:

PRINT #1, "MADJMOD UNMD"

In this case, perform the following operations before activating this subroutine. Put the input signal in the unmodulated state and execute PEAK \rightarrow CF and PEAK \rightarrow REF. Then return to the modulated state.

3.2.7 Occupied frequency bandwidth measurement

```
<Example 7> Subroutine for occupied frequency bandwidth measurement using N% of POWER
          method
         2 '
            Sample program
         3'
            <<Occ BW measure>>
         5 '
         6 ' Setup parameter of PC Com. port
         7 '
         8 OPEN "COM1:2400,N,8,1,CD500,DS0,LF" FOR RANDOM AS #1
         9 '
        10 PRINT #1, "INI"'
                                 Initialize Spectrum Analyzer
        11 '
        12 PRINT #1, "CF 500MHZ"'
                                 Center frequency : 500MHz
        13 PRINT #1, "SP 50KHZ"'
                                 Span frequency :50kHz
        14 '
        15 GOSUB OBW'
                                 Call Occ BW measure subroutine
        16 END
        17 '
        19' OBW MEASURE SUBROUTINE
        21 OBW:
        22 '
        23 PRINT #1, "MOBW N"'
                                OccBW measure method : n% method
        24 PRINT #1, "OBWN 99"'
                                n%
                                                   : 99%
        25 PRINT #1, "DETM SMP"'
                               Detection mode
                                                  : Sample
        26 PRINT #1, "VAVG 16"'
                               Average sweep count : 16
        27 PRINT #1, "VAVG ON"'
                                Average sweep On
        28 '
        29 PRINT #1, "TSAVG"'
                                 Take average sweep
        1Ø '
        31 PRINT #1, "MEAS OBW, EXE" ' Perform OccBW measure
        32 '
        33 PRINT #1, "RES?"'
                                 Query the result
        34 INPUT #1, OBWFREQ, CNTRFRQ'
                                    Read out the result data
                                  response-1:Occ BW frequency
        35 '
        37 '
                                 response-2:Signal center frequency
        38 '
        39 PRINT USING "CENTER FREQ=####.###MHz"; CNTRFRQ / 1000000!
        4Ø PRINT USING "##%BW FREQ=####.###kHz"; NPC; OBWFREQ / 1000
        41 '
        42 RETURN
```

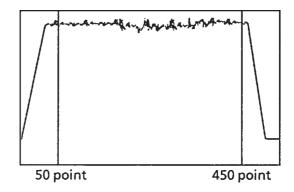
Line 24 sets the N% value to set n = 99% in <Example 9> by sending the OBWN command for setting the occupied frequency bandwidth to MT8801C at line 23 and 24. Line 25 sets the detection mode to SAMPLE. Line 26 set the averaging count and line 27 averaging to ON respectively.

3.2 Sample Programs

Line 29 issues the "TSAVG" command to repeat the sweep by the required number of times for averaging processing. Line 31 measures the occupied frequency bandwidth of the averaging-processed waveform. Line 33 queries reading the occupied frequency bandwidth and the center frequency of the frequency bandwidth at line 34. To make a measurement using X dB DOWN, rewrite lines 23 and 24 as shown below:

PRINT @SPA;"OBWXDB 25" PRINT @SPA;"MOBW XDB"

•


3.2.8 Burst wave average power measurement

<Example 8> Subroutine for burst wave average power measurement Fig.

2 ' Sample program 3 ' <<Burst power measure>> 5 ' 6 ' Setup parameter of PC Com. port 7 8 OPEN "COM1:2400,N,8,1,CD500,DS0,LF" FOR RANDOM AS #1 9 ' 10 PRINT #1, "INI"' Initialize Spectrum Analyzer 11 ' 12 PRINT #1, "CF 500MHZ"' Center frequency :500MHz 13 PRINT #1, "DFMT TIME"' Display :Trace-Time(Zero span mode) 14 PRINT #1, "TRGSOURCE WIDEVID"' Trigger source :Wide IF video 15 PRINT #1, "TRGS TRGD"' Trigger sweep On 16 PRINT #1, "TDLY -6ØUS"' Delay time :-60 usec Time span :12 msec 17 PRINT #1, "TSP 12MS"' 18 PRINT #1, "TS"' Take a sweep 19 ' 20 GOSUB MEASPWR' Call burst power measure subroutine 21 ' 22 END 23 ' 25 ' Burst power measure SUBROUTINE 27 MEASPWR: 28 ' 29 PRINT #1, "PWRSTART 5Ø"' Power measure start point :50 point(1 div) 30 PRINT #1, "PWRSTOP 450"' Power measure stop point :450 point(9 div) 31 ' 32 PRINT #1, "MEAS POWER,EXE"' Perform power measure 33 ' 34 PRINT #1, "RES?"' Query the result 35 INPUT #1, PWRDB, PWRW' Read out the result 36 ' 37 PRINT USING "####.##dBm ####.##mW"; PWRDB; PWRW / 1E+09 38 RETURN

This program is a subroutine that measures the burst wave average power. Lines 29 and 30 set the measurement start and stop points on the screen display. The average power is measured at line 32.

Data can be obtained as a value with dBm units or pW UNITS.

When a waveform is displayed on the screen as shown in the left diagram (TIME domain), the average power between 50 point and 450 point is measured

Before calling the subroutine, lines 12 to 18 set the center frequency, time delay, etc. to execute the sweep.

3.3 Precautions on Creating the GPIB Program

Note the following points when writing remote control programs.

No.	Precaution	Description
1	Be sure to initialize each device.	 There may be a number of the state in which each device is not proper to be actually used due to operation on its own panel or execution of other programs. It is necessary to using individual devices with a prescribed condition resulting from initializing them. Execute the following. [1] Initializing the interface functions (Send IFC) [2] Initializing message exchange functions of each device (DevClear) [3] Initializing the functions proper to each device (INI or *RTS)
2	Do not send any command (related to the device) other than the Receive @ statement immediately after sending a query.	If MLA is received when a command other than the Receive @ statement is sent to the controller before the response to a query is read, the output buffer is cleared, and the response message disappears. For this reason, write the Receive @ statement in immediate succession to a query.
3	Create a program that avoids the exception processing of the protocol.	Avoid stoppage of execution (caused by an error) by means of providing a program with exception-processing section against exceptions that can be foreseen.
4	Confirm the interface function of each device (subset).	Execution of program does not advance if necessary subset (s) has (have) not been prepared in the device. Be sure to confirm the subset (s) of each device. Also confirm that each device complies with IEEE488.2.

3.4 Sample Program (GPIB)

3.4.1 Initializing (GPIB)

```
<Example 9>
           Initializes the MT8801C
        2 ' GPIB control sample program
        3 '
            <<Initialize GPIB bus & MT8801C>>
        5 REM $INCLUDE: 'C:¥YAT-GPIB¥QBASIC¥QBEDECL.BAS'
        6 DECLARE SUB gpiberr (msg&)
        7'
        8 SPA% = 1' Set SPA GPIB address
        9 CALL SendIFC(Ø)'
                        Send GPIB bus interface clear
       10 CALL DevClear(0, SPA%)' Send Device Clear to MT8801C
       11 CALL Send(Ø, SPA%, "IP", NLend)' Send Initialize command "IP"
       12 END
       13 '
```

Line 9: Interface-clears GPIB bus.

Line 10: Specifies Spectrum Analyzer address, and sends device-clear.

Line 11: Sends "IP" command to for initialization.

There is a '*RST' command in another GPIB command for executing initialization. The '*RST' command is used to execute initialization over a winder range. The usage of the 'IP' command is identical to the 'INI' command.

For general usage of INI and *RST, first initialize the Spectrum Analyzer device functions with the IP or INI command, then use the program commands to set only the functions to be changed. This prevents the Spectrum Analyzer from being controlled while unnecessary functions are set.

3.4.2 Reading trace data (GPIB)

<Example 10> Performs the same operation as Example 3-1, using GPIB.

```
2 '
     GPIB control sample program i
 3 ' <<Read out Trace data>>
 5 REM $INCLUDE: 'C : ¥AT-GPIB¥QBASIC¥QBDECL.BAS'
 6 DECLARE SUB gpiberr (msg$)
 7
  1
 8 SPA% = 1'
                                          Set SPA GPIB address
 9 '
1Ø '
           Initialize GPIB bus & MT8801C
11 CALL SendIFC(Ø)
12 CALL DevClear(Ø, SPA%)
13 CALL Send(Ø, SPA%, "IP", NLend)
14 '
15 '
16 CALL Send(Ø, SPA% "CF 5ØØMHZ", NLend)' Center frequency :5ØØMHz
17 CALL Send(Ø, SPA%, "SP 10MHZ", NLend) ' Span frequency :10MHz
18 CALL Send(Ø, SPA%, "TS", NLend)
                                          Take a sweep
19 '
20 DIM TRACE(501) '
                                          Define read data area
21 CALL Send(Ø, SPA%, "BIN Ø", NLend)'
                                          Set read out data type to
ASCII
22 '
23 FOR I = \emptyset TO 5\emptyset\emptyset'
                                          Repeat trace (Ø) to
trace(500):501 points
24 CMD$ = "XMA?" + STR$(I) + ",1"
25 CALL Send(Ø, SPA%, CMD$, NLend)'
                                          Query trace data
26 '
27 DATA$ = SPACE$ (100)
28 CALL Receive(Ø, SPA%, DATA$, NLend)'
                                          Read out trace data
29 '
3\emptyset TRACE(I) = VAL(DATA$)'
                                          Store readout data to trace
data area
31 '
                                          Print out trace data
32 PRINT USING "Trace-A(###) ####.##"; I; TRACE(I)/100
33 NEXT I
34 '
35 '
36 END
              Lines 11 to 13: Initializes GPIB bus and the Spectrum Analyzer.
```

CALL Send () statements after line 13: Sends the Spectrum Analyzer commands. Command termination code is specified to NLend (line-feed code, New-Line or LF). CALL Receive () statements at line 28: Reads out trace data from the Spectrum Analyzer.

Termination code of the read data is specified to NLend.

Line 30: Converts the read character-string data to numeric data, and stores it at tracedata store area.

Appendixes

Appendix A Table of Spectrum Analyzer Device-dependent Initial Settings A-1 Appendixes

Appendix A Table of Spectrum Analyzer Device-dependent Initial Settings

Group	Outline	Control item	Initial setting data	
Group	Outime	Control item	TRACE-A, B	TRACE-TIME
	Selects the mode for setting a frequency band.	FREQUENCY MODE	START-STOP	
	Sets the start frequency	START FREQUENCY	10 MHz	
	Sets the center frequency	CENTER FREQUENCY	1.505 GHz	
Frequency	Sets the stop frequency	STOP FREQUENCY	3 GHz	
	Sets the frequency span	FREQUENCY SPAN	2.99 GHz	*0 Hz
	Sets the center-frequency step size	CENTER FREQ STEP SIZE	1 GHz	
	Select Band	BAND SELECT	Band1	
	Sets the reference level	REFERENCE LEVEL	-10 dBm	
	Set the reference level step size	REF LEVEL STEP SOZE	AUTO: 1 div	
Level	Sets the display line	DISPLAY LINE	OFF	
	Sets the display line level	DISPLAY LINE LEVEL	-60 dBm	
	Selects the ABS or REL marker level	MARKER LEVEL ABS/REL	A:ABS B:ABS	ABS
	Selects the display mode	DISPLAY MODE	TRACE-A	
	Selects the mode for processing a waveform	TRACE STORAGE MODE	NORMAL	NORMAL
	Number of traces averaged	AVERAGE No.	8 times	
	Selects the detection mode	DETECTION MODE	PEAK	SAMPLE
	Sets the delay time	DELAY TIME		0 sec
	Sets the time span	TIME SPAN		100 msec
Display mode	Sets the active marker when display mode is trace A/B	TRACE-A/B ACTIVE MKR	TRACE-A	
	Selects the marker mode	MARKER MODE	NORMAL	
	Specifies the zone-marker center	ZONE MAKER CENTER	250 point	250 point
	Specifies the zone-marker width	ZONE MAKER WIDTH	51 point (1 div)	*1 point
	Search resolution	SEARCH RESOLUTION	5 dB	
	Search threshold	THRESHOLD	OFF	
	Sets the sweep mode	SWEEP MODE	CONTINUOUS	
	Sets the gate sweep function to ON/OFF	GATE SWEEP	OFF	
Sweep function	Sets the gate delay time	GATE DELAY	0 sec	
Sweep function	Sets the gate length	GATE LENGTH	1 msec	
	Sets the trigger switch mode	TRIGGER SWITCH	FREE RUN	FREE RUN
	Sets the trigger source	TRIGGER SOURCE	Wide IF Video	
	Selects the trigger slope	TRIGGER SLOPE	RISE	

Table A Device-Dependent Initial Settings (1/2)

Appendix A Table of Spectrum Analyzer Device-dependent Initial Settings

0	Outline	Control item	Initial setting data	
Group			TRACE-A, B	TRACE-TIME
Waveform writing/reading	Sets the trace write switch to ON/OFF	TRACE WRITE SWITCH	ON	ON
	Sets the trace read switch to ON/OFF	TRACE READ SWITCH	ON	ON
	Selects the mode for setting the resolution bandwidth	RESOLUTION BANDWIDTH	AUTO	AUTO
Coupled	Selects the mode for setting the video bandwidth	VIDEO BAND WIDTH	AUTO	AUTO
function	Selects the mode for setting the sweep time	SWEEP TIME	AUTO	AUTO
	Selects the mode for setting the RF attenuator	RF ATTENUATOR	AUTO	
	Selects the item to be measured	MEAURE ITEM	OFF	
	Selects the occupied frequency bandwidth measurement method	OBW MEASURE METHOD	Not initialized *RST: N%	
	Sets the occupied frequency bandwidth to N%	OBW N% VALUE	Not initialized *RST: 99%	
	Sets the occupied frequency to X dB	OBW XdB VALUE	Not initialized *RST: 25 dB	
	Selects the adjacent channel leakage power measurement method	ADJ-CH MEASURE METHOD	Not initialized *RST: R:TOTAL POWER	
	Selects the adjacent channel leakage power measurement method	ADJ-CH GRAPH	Not initialized *RST: ON	
	Selects the adjacent channel	ADJACENT CH SELECT	Not initialized *RST: BOTH SIDES	
Measure function	Sets the adjacent separation 1	ADJACENT CH SEPARATION1	Not initialized *RST: 12.5 kHz	
function	Sets the adjacent separation 2	ADJACENT CH SEPARATION2	Not initialized *RST: 25.0 kHz	
	Sets the adjacent channel bandwidth	ADJACENT CH BANDWIDTH	Not initialized *RST: 8.5 kHz	
	Sets the adjacent channel center line display	ADJ-CH CENTER LINE	Not initialized *RST: ON	
	Sets the adjacent channel band line display	ADJ-CH BAND LINE	Not initialized *RST: OFF	
	Selects the noise measurement method	NOISE MEASURE METHOD	Not initialized *RST: ABS	
	BURST POWER START POINT	BURST POWER MEASURE START POINT	100 point	
	BURST POWER STOP POINT	BURST POWER MEASURE STOP POINT	400 point	
Calibration	Automatical calibration	CAL	ON	
CAL/ UNCAL	Displays couple failure	UNCAL DISPLAY	Not initialized. Initialized to ON at p	ower-on.

Table A Device-Dependent Initial Settings (2/2)

Note: • In the above table, in place of the parameters not initialized by the INIT command or P+reset key, the initial settings (indicated by *RST) initialized by the *RST command are listed. In place of the parameters not initialized by the *RST command, the values at the shipment are listed.